A Model of Calcium-Induced Calcium Release from the Sarcoplasmic Reticulum in The Smooth Muscle Cell and its Investigation by Mathematical Modeling
Article Information
PF Zhuk1, SO Karakhim*,2, SO Kosterin2
1National Aviation University, Kyiv, Ukraine
2Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
*Corresponding author: SO Karakhim, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Received: 22 April 2025; Accepted: 29 April 2025; Published: 10 May 2025
Citation: PF Zhuk, SO Karakhim, SO Kosterin. A Model of Calcium-Induced Calcium Release from the Sarcoplasmic Reticulum in The Smooth Muscle Cell and its Investigation by Mathematical Modeling. Journal of Pharmacy and Pharmacology Research. 9 (2025): 54-83.
Share at FacebookAbstract
A model of calcium-induced calcium release (CICR) from the sarcoplasmic reticulum was developed, simulating the behavior of the smooth muscle cell under conditions of its agonist stimulation. The mathematical model is a system of thirteen differential equations. In the initial (basal) state, the parameters of active and passive transport of Ca2+ through both the plasma membrane and the sarcoplasmic reticulum membrane are adjusted. A study of the model showed that, depending on the model parameters, the cell system can demonstrate two types of calcium concentration changes in the cytosol: a single Ca2+ transient and an oscillatory mode. After stimulation is completed, the cell system returns to the basal state (under in vivo conditions) or goes to a new steady-state level (under in vitro conditions), except when the cell system is in oscillatory mode. It is shown that the sarcoplasmic reticulum can act both as a passive participant in the process of Ca2+ accumulation in the cytosol, acting as a buffer, and play a major role by significantly increasing the Ca2+ concentration in the cytosol. As a result of calcium-induced calcium release, the sarcoplasmic reticulum is not completely emptied, but retains quite significant amounts of Ca2+. The possibility of Ca2+ redistribution between the three compartments (extracellular space, cytosol and sarcoplasmic reticulum) creates the possibility of oscillation of cytosolic Ca2+ concentration. The developed model qualitatively reproduces the results of experimental studies conducted to identify store-operated calcium channels using the inhibitors of the calcium pump of the sarcoplasmic reticulum in a calcium-free medium.
Keywords
mathematical model, plasma membrane, sarcoplasmic reticulum, store-operated channel, calcium-induced calcium release, transmembrane calcium transport
mathematical model articles, plasma membrane articles, sarcoplasmic reticulum articles, store-operated channel articles, calcium-induced calcium release articles, transmembrane calcium transport articles
Article Details
Introduction
Intracellular free Ca2+ is the most important factor in the muscle contraction-relaxation mechanism. It initiates several interrelated reactions involving, in particular, actin, myosin, and ATP, which results in muscle contraction [18, 22, 29, 34, 44, 52]. The degree of contraction is determined by the intracellular Ca2+ concentration; therefore, the study of the mechanisms of Ca2+ accumulation in a muscle cell and its removal from it is important for understanding the processes of muscle contraction and relaxation. Ca2+ enters the muscle cell from three sources: the extracellular space, the sarcoplasmic reticulum, and the mitochondria [11, 29, 34, 35]. In each of these sources, the concentration of ionized calcium is approximately 3-4 orders of magnitude higher than the Ca2+ concentration in the cytosol of the muscle cell in the basal state [29]. This concentration gradient is made possible by membranes: the plasma membrane (PM), which isolates the cell from the extracellular space and membranes covering the sarcoplasmic reticulum (SR) and mitochondria (MX). Membranes play a crucial role in calcium homeostasis because they contain protein structures that enable calcium cations to pass through the membrane in both directions. Ca2+ enters the cytosol via the PM, SR, and MX calcium channels, that allow calcium cations to pass down the concentration gradient (passive transport). Calcium pumps remove Ca2+ from the cytosol against a concentration gradient (active transport). Ion exchangers are also involved in the process of calcium removal from the cytosol [11, 18, 29, 44, 58].
The combination of passive and active transport mechanisms allows Ca2+ to redistribute quite easily between the cytosol, SR, MX, and the extracellular space, resulting in the establishment of a dynamic equilibrium in the cellular system. This enables the cell system to return to the initial (basal) state, which is characterized by strictly defined Ca2+ concentrations in cytosol, SR, MX and extracellular space after any stimulating action. Researchers believe that there are several types of ion channels on the PM of smooth muscle cells, which enables Ca2+ to enter the cytoplasm. Most of them distinguish voltage-operated (VOC), which are also called voltage-depended or voltage-gated calcium channels, receptor-operated (ROC) and calcium channels that are sensitive to depletion of calcium stores in the SR (store-operated calcium channels or SOCs) [1, 4, 11, 18, 22, 23, 31, 34, 36, 54]. Two types of calcium channels exist on the membrane of SR, each with corresponding receptors: ryanodine (RyR) and inositol 1,4,5-trisphosphate (IP3R) [11, 22, 31, 46, 54]. Both types of channels are Ca2+-dependent, and it is believed that Ca2+ channels are activated at low Ca2+ concentrations and inhibited at high concentrations [11, 22]. These channels are considered to differ in that RyR channels open in response to an increase in Ca2+ concentration in the cytosol caused by the opening of voltage-depended plasma membrane channels in response to plasma membrane depolarization [16, 31, 55], while IP3R channels are activated by inositol 1,4,5-trisphosphate, which is formed as a result of agonist action on receptor-operated channels of PM [11, 55]. Calcium pumps on the PM and on the membrane of SR are Ca2+-ATPases and are designated PMCA and SERCA, respectively [4, 18, 35, 46]. PMCA activity is strongly dependent on the cytosolic Ca2+ concentration (at low Ca2+ concentrations, about 100 nM), reaching a saturation level at Ca2+ concentrations of about 400 nM [35]. Another participant in Ca2+ removal from the cytosol is the Na+ / Ca2+ exchanger [46], but its productivity is lower than that of PMCA (it removes 25-30 % of all Ca2+ that enters the cytosol, versus 70-75 % removed by PMCA [18]).
In general, the process of changes of Ca2+ concentration in the intracellular space is currently presented as follows: activation of receptor-operated calcium channels leads to the appearance of inositol 1,4,5-trisphosphate in the cytosol, which opens the IP3R channels of SR, resulting in the rapid release of large amounts of Ca2+ from SR stores into the cytosol [55]; the activation of voltage-operated calcium channels, which occurs as a result of PM depolarization, leads to entry into the cytosol from the extracellular space of a certain amount of Ca2+, which, when interacting with the ryanodine receptors, opens RyR channels of SR, which also leads to rapid emptying of SR stores and, consequently, to a rapid increase in Ca2+ concentration in the cytosol. The latter process is called calcium-induced calcium release and abbreviated CICR [14, 34, 46, 55, 58]). The increase of Ca2+ concentration in cytosol activates both PMCA and SERCA, and Ca2+ starts to be pumped out of cytosol both into SR and extracellular space [55]. The depletion of the calcium stores of SR causes Ca2+ entry into the cell from the extracellular space through calcium channels of PM, which are called store-operated channels or SOCs [11, 36, 39, 50, 55]. This process is called store operated Ca2+ entry or SOCE [36, 39, 46] (which was earlier known as capacitive Ca2+ entry or CCE [3, 11, 23, 38]), and it allows to refill the SR stores with Ca2+ up to basal level. The current through the SOCs fixed using the patch-clamp method is called ICRAC (Ca2+-release-activated Ca2+ current) [33, 39]. The latter processes reduce the Ca2+ concentration in the cytosol to the initial (basal) value, as well as refill the SR stores with Ca2+ to the basal level. Thus, the cellular system returns to its original state. Of course, the picture considered is already considerably simplified. First of all, as mentioned earlier, mitochondria [4, 11, 18, 29, 44, 46, 58], which can rapidly release Ca2+ into the cytosol and rapidly pump it out from the cytosol, like SR, in this way take part in calcium homeostasis, as well as Na+ / Ca2+ exchanger of PM [11, 18, 29, 44, 46, 58], transporting Ca2+ from the cytosol into the extracellular space. There are also two other classes of ion channels on the PM of smooth muscle cell that are Ca2+-sensitive – KCa and ClCa [11, 54], whose activation leads to depolarization of PM, as well as calcium-binding proteins in the cytosol and SR [4, 18]. However, even without this, the picture is quite complicated, since the detailed mechanism for almost any step has not been established, due to the fact that it is difficult to reproduce the physiological process under experimental conditions.
One of the most important issues is the process of calcium-induced calcium release from SR. Firstly, such attention is due to the importance of this process for medicine, particularly cardiology. It is now clear to researchers that an excessive increase in cytosolic Ca2+ concentration plays a major role in the development of myocardial damage during ischemic reperfusion and that Ca2+ release from SR is a critical process in the early phase of ischemia. Therefore, it is believed that any intervention in the process of emptying calcium stores in the SR in order to lower the rate of calcium release from the SR should be cardioprotective [58]. Secondly, this process is key to understanding the physiological role of Ca2+ in muscle contraction-relaxation. Despite a large number of studies, much remains unclear in the mechanism of calcium-induced calcium release [11, 55]. It is still not entirely clear how Ca2+ opens and closes calcium channels of SR [22, 11], whether it only opens RyR channels or IP3R channels as well [11, 18, 22, 55]; how the avalanche-like Ca2+ release from SR is stopped [11, 58] and how the frequently observed periodic fluctuations of Ca2+ concentration in cytosol under agonist stimulation can be explained [55, 58].
Another equally important and interesting process is SOCE, i.e., the refilling of the SR store with calcium due to the opening of the SOCs. This process seems even more puzzling than CICR, since very synchronous interactions occur between structures (PM and SR) that are remote from each other and separated by the cytosol. There is also much that is still unclear here: (i) what is the nature of SOCs [23, 35, 37, 39], (ii) how is the communication between SR and SOCs organized so that SOCs can sense when SR is emptied [34, 35], (iii) how SR stores are refilled with extracellular Ca2+, if in general refilling occurs when cytosolic Ca2+ concentration is near basal level and no longer changes substantially [35] and (iv) how SOCs sense when SR stores is completely filled with Ca2+ again to close [34]. Various assumptions have been made in scientific literature about possible mechanisms of activation and inhibition by calcium cations of channels and pumps on PM and SR [4, 11, 22, 33, 35, 41, 44, 45, 54, 55], about the mechanisms responsible for SOCE [4, 33-35, 38, 39, 50], theoretical models have been constructed to reproduce some of the observed experimental results [7, 10, 28, 44, 45, 51-53], but so far the processes discussed above remain largely unexplained.
To explore the intrinsic features of the CICR process and to better understand how it occurs, we developed and investigated a calcium-induced calcium release model.
Using modeling we have attempted, in particular, to find answers to the following questions:
- • can cytosolic Ca2+ regulate the process of Ca2+ release from the SR?
- • how the avalanche-like process of Ca2+ release from the SR, caused by an increase in the concentration of Ca2+ in the cytosol, can be stopped?
- • whether it is necessary to close the calcium channels on PM with cytosolic Ca2+ to terminate the increase of Ca2+ concentration in the cytosol?
- • what causes the appearance of oscillations of Ca2+ concentration in the cytosol under the agonist stimulation?
- • how are SR stores refilled with Ca2+ from the extracellular space?
- • can such refilling be carried out through the cytosol so that the Ca2+ concentration in the cytosol remains practically unchanged?
- • can this process take place without SOCs?
- • how can the complete filling of SR stores with Ca2+ have an effect on the closing of the SOCs?
- • how can precisely coordinated processes occur in the cell, leading to the fact that after the termination of stimulation, the Ca2+ concentrations in the cytosol, SR and extracellular space return to the previous (basal) level (i.e., to the level that was before stimulation)?
Calcium-induced calcium release model
Model description
In order to find answers to these questions, we developed a mathematical model of the calcium-induced calcium release from SR, focusing primarily on smooth muscle cells. It was created on the basis of the model we studied earlier [56]. An essential addition to the former model is the presence of SR, which allowed us to study the Ca2+ concentration changes in cytosol, SR and extracellular space from the beginning of cell stimulation by a signal substance (agonist) up to complete return of the cell to the basal state when stimulation would be terminated. Several similar models have been published in the literature [7, 10, 44, 45, 51-53], the purpose of which was to achieve agreement with the experiment. Therefore, these models took into account practically all ideas about calcium homeostasis in the cell and covered all possible participants of this process. As a result, although there was some agreement between the model calculations and the results of real experiments, no answers to the above questions were found. The system was so complex that it was difficult to monitor the mutual influence of different processes and understand how they affect the process as a whole.
Therefore, we decided to make our model as simple as possible, but to take into account all necessary components, avoiding duplication and unnecessary complications. At the same time, the cell system should return to the previous state (which was before stimulation), as it happens in a living organism in norm. In this connection, our model considers a smooth muscle cell consisting of a plasma membrane isolating the cytosol from the extracellular space (with the cell volume equal to the volume of the extracellular space) with calcium channels (ROC) and a calcium pump located on it, as well as a sarcoplasmic reticulum with calcium channels (RyR) and calcium pump also located on its membrane. As a first approximation, we assumed that the concentration of calcium channels on PM and SR membrane is the same, just as the parameters of calcium pumps of PM and SR are the same. In the absence of stimulation, the cell is in a steady state (in the framework of the model it is an equilibrium state) characterized by a stable dynamic equilibrium with Ca2+ concentrations in the cytosol, SR and in the extracellular space equal to 100 nM, 1 mM and 1 mM, respectively (basal state). Calcium channels on the outer side of the PM have receptors, whose interaction with a signaling substance that arrives in the extracellular space as a signal from other organs leads to the opening of the calcium channels of PM. We chose this way of stimulation (through action on receptors) because it is physiologically important and represents a way of therapeutic action on body organs and tissues (for example, on smooth muscles in their excessive contraction due to hypertension or asthma) [1].
There is information in the literature about experimental results showing that under conditions close to physiological ones, application of moderate concentrations of substances stimulating contraction leads to an increase in Ca2+ concentration in the cytosol of myocytes (the increase in Ca2+ concentration depends on the dose of physiologically active substances) and this increase is due to the extracellular cation pool [29]. It is also known that the conductance of voltage-depended channels can be regulated by neurotransmitters and hormones [29]. Nelson et al. note that vasoconstrictors such as NE and serotonin can depolarize the arterial membrane, causing Ca2+ entry into the cell through voltage-depended channels, or can increase Ca2+ entry into the smooth muscle cell through PM with no significant depolarization [32]. Based on these data, the authors consider the possibility that NE receptor-dependent channels and voltage-depended calcium channels of PM are actually one and the same. The article [23] also discusses such a possibility. When modeling the interaction of calcium channel receptors located on the PM with a signal substance, we based on the fact that in the body, in response to stimulation, a substance that is a signal-transmitter substance (a signal substance), such as a hormone, is secreted or synthesized with which special enzymes interact immediately, and as a result this signal substance is quickly enough completely decomposed [19]. Such enzyme catalyzed transformation of the signaling substance is incorporated in our model, but the signaling substance in the model is injected immediately at its maximum concentration. The disappearance of the signaling substance under the action of the enzyme can also, in the first approximation, be considered as the injection of the pharmacological drug (which is not subject to enzymatic transformation) and its further removal from the zone of influence on the cell by blood flow. Calcium channels on the cytosolic side of the SR also have receptors that can interact with cytosolic Ca2+, thus opening these channels for Ca2+ release from the SR into the cytosol.
In our model, the calcium channels on the SR have ryanodine receptors (RyR). The characteristics of the calcium channels were specially chosen by us because they allow us to investigate a complex process with the involvement of a minimum required set of components. Therefore, in our model, stimulation is carried out through receptor-operated channels (because this is the most physiological way of stimulation), with Ca2+ (the main regulator of muscle contraction) entering the cell and initiating the calcium-induced calcium release from SR. To simplify the model, it does not include mitochondria, but only SR, because MX somewhat duplicates SR by releasing Ca2+ into the cytosol and pumping it out of the cytosol. The mitochondrial Ca2+ uniporter is known to have a lower affinity for Ca2+ than SERCA and is probably only important when cytosolic Ca2+ is elevated above 0.5 μM [13]. From this point of view, SR can be considered, within the framework of the model, as an “integral” structure (SR+MX), which contains the store of intracellular Ca2+, which can be released into the cytosol and pumped back out again. Of course, such an approximation may to some extent affect the shape of the kinetic dependences, but, in our opinion, it will not be able to distort the qualitative picture of the process. Our model considers SR not as a single structure but as a set of 100 autonomous structures (compartments, vesicles, cisternae) of the same size, each with calcium channels and a calcium pump on its membrane – this approach is based on the literature data on SR in smooth muscle [22, 34]. Note that in the model the SR can also be represented as a single structure (the corresponding model parameter must be changed for this purpose). Buffer proteins were also not considered in the model because their presence (in physiological concentrations) should not qualitatively change the kinetic dependences, and there is also evidence in the literature that these proteins have little effect both on the value of the maximum calcium concentration in the cytosol and on the time to reach this maximum [51]. We also did not take into account Na+ / Ca2+ exchanger because the model does not consider Na+ homeostasis in the cell. The same applies to K+, so the model does not consider changes in PM potential.
Thus, the smooth muscle cell in which the process of calcium-induced calcium release takes place can be represented as follows:
- a smooth muscle cell has a volume Vcell and is surrounded by a plasma membrane with an area SPM on which there is a constant (equal to SPM.[R]all) number of calcium channels (where [R]all is the surface concentration of calcium channels of the plasma membrane, i.e., the number of calcium channels per unit area of myocyte membrane);
- there are a certain number (nr) of SR cisternae in the cell, the volume and surface area of each of them are equal to Vr and Sr, respectively. On the surface of each SR cisterna there is a constant (equal to Sr.[RR]all) number of calcium channels (where [RR]all is the surface concentration of calcium channels of the SR, i.e., the number of calcium channels per unit surface area of the membrane of SR cisterna);
- in the steady state there is a small Ca2+ flux into the cell through the calcium channels of PM (which we will call the slow basal Ca2+ flux through the closed calcium channels of PM (SBF-PM) not to be confused with the passive Ca2+ entry into the cytosol through the open Ca2+ channels of PM) [29, 32], which is compensated by its pumping out from the cytosol into the extracellular space by the calcium pump of PM. Similarly, in the steady state there is a small Ca2+ flux into the cytosol from the SR (slow basal Ca2+ flux through closed Ca2+ channels of the SR (SBF-SR) or leak [2]). Ca2+ passes into cytosol from the SR also through calcium channels opened by Ca2+ present in the cytosol (at 100 nM). The total flow of Ca2+ from the SR into the cytosol is compensated by its pumping out of the cytosol into the SR by calcium pumps of SR cisternae (each SR cisterna has its own calcium pump);
- an average Ca2+ concentration is rapidly established in the cytosol, so all SR cisternae equally participate in maintaining calcium homeostasis in the myocyte (the percentage of open channels and their throughput capacity are the same for all cisternae; the calcium pumps of each cisterna are also characterized by the same parameters of Michaelis constants and the limiting rate), so at any time the Ca2+ concentration inside SR cisternae is the same;
- signal substance A binds to calcium channel receptor R on the outer surface of the PM resulting in opening of the channels and increasing their throughput capacity;
- there are RR receptors on the surface of SR cisternae [14]) that can bind cytosolic Ca2+ [44], resulting in opening of the channels and significantly increasing their throughput capacity. Open calcium channels of SR can have a significantly higher throughput capacity than open calcium channels of PM;
- signal substance A is destructed by the enzyme, resulting in a gradual decrease in its concentration, which leads to a decrease in the amount of signal substance bound to the receptors, and, consequently, a decrease in the number of open calcium channels of the PM;
- open calcium channels of PM can also be closed due to blockage by cytosolic Ca2+ (“Ca2+-dependent inactivation”) [29, 30, 34].
Description of the steady state (basal state)
Since there are indications in the literature that Ca2+ can itself reversibly inactivate various calcium channels of PM [22, 29, 30, 34], the model took into account that calcium channels of PM have Ca2+ binding sites on the cytoplasmic side. When calcium channels on the PM open, Ca2+ enters the cell. Subsequently, due to the increased concentration of Ca2+ in the cytosol, Ca2+ binds with these sites, leading the calcium channels to close. We believe that cytosolic Ca2+ can interact with such calcium channel sites whether the channels are open or not. In the steady state (in the absence of signaling substance), calcium channels are in the closed state R, passing Ca2+ at a slow rate (SBF-PM [29, 32]). At the same time, we consider that cytosolic Ca2+ (with a basal concentration of 100 nM) are able to bind to the calcium channel binding sites on the inner side of the PM, forming the RCa complex (the channels remain closed) and their surface concentration in steady state is [RCa]b:
Regardless of the state of the channel (R or RCa), it has a fixed (slight) throughput capacity (SBF-PM) [29, 32], which is characterized by the DPM coefficient. The passive calcium flux into the cytoplasm from the extracellular space in the basal state (Jp,PM,b) is determined by Fick’s law:
where [Ca2+]o,b and [Ca2+]c,b are concentrations of Ca2+ in the extracellular space and in the cytosol in the basal state, respectively. In the steady state (basal state), the active Ca2+ flux through the membrane into the extracellular space from the cytosol is exactly the same in magnitude but reversed in direction. It is generated by the calcium pump of PM (Ja,PM,b), and is described by the Michaelis-Menten equation within the framework of this model:
where VmPM is the limiting rate of the calcium pump of PM, KmPM is the Michaelis constant relative to Ca2+, Vc is the volume of smooth muscle cell excluding SR volume (i.e. cytosol volume). Due to the equality of Ca2+ fluxes through the PM inside the smooth muscle cell and out of the myocyte, we obtain the first equilibrium equation:
Since under steady state conditions the cytosol contains Ca2+ at a concentration of 100 nM, some of these cations will bind to calcium channel receptors on SR (RR) [44]
which will inevitably lead to the fact that part of the calcium channels of SR will be open, allowing Ca2+ to pass from SR to cytosol [2, 43]. The passive Ca2+ flux from SR to cytosol for the steady state (as the sum of the SBF-SR and the Ca2+ flux through the calcium channels of SR which are open in the basal state) can also be written using Fick’s law:
where [RR]b, [RRCa]b are surface concentrations of calcium channels on the SR membrane in the closed and open states, respectively; [Ca2+]r,b are basal Ca2+ concentrations in the SR, μSR is the conductance gain coefficient of the calcium channel of SR.
The active Ca2+ flux through the SR membrane from the cytosol to the SR of the same magnitude, but in the opposite direction, is generated by the calcium pump of SR, and can also be described by the Michaelis-Menten equation:
where VmSR is the limiting rate of the calcium pump of SR, KmSR is the Michaelis constant of the calcium pump of SR with respect to Ca2+. Thus, using the condition of equality of Ca2+ fluxes through the SR membrane, we obtain the second equilibrium equation:
Thus, equations (4), (8), (11) and (12) describe the steady state (basal state) of the smooth muscle cell system.
Description of non-stationary processes
The non-stationary process begins when the signaling substance (agonist) A appears in the extracellular space (the volume of which per myocyte is taken as Vo) and interacts with calcium channel receptors located on the outer side of PM [57]:
This produces a gradual disappearance of signaling substance A outside the cell.
Thus, calcium channels are present on the PM in four states: open AR; closed R; closed inactivated RCa; open inactivated ARCa. We assume that the calcium channels of PM in the R, RCa, or ARCa states all have the same throughput capacity with coefficient DPM (i.e., they are in fact closed channels), whereas the throughput capacity of the calcium channel of PM in the AR state (i.e., open channel) is significantly higher (μPM.DPM). So, the agonist amplifies the throughput capacity of calcium channels of PM not inactivated by Ca2+ by μPM times. Similarly, we assume that the calcium channels of SR in the closed state (RR) have a throughput capacity with coefficient DSR, whereas the throughput capacity of the open calcium channel of SR (RRCa) is significantly higher (μSR.DSR). So, activation of the calcium channels of SR by cytosolic Ca2+ increases the throughput capacity of these channels by μSR times. Reactions (1), (5) and (13)-(16) represent the chemical aspect of the process. Based on these reactions, we can calculate concentrations of open and closed channels on PM and SR, as well as concentrations of A, F, FA, and P. Let’s write down the corresponding kinetic equations:
Now we need to calculate Ca2+ concentrations in the extracellular space, in the cytosol, and in the SR. To do this, let us first write the equations for Ca2+ fluxes through PM and SR membrane. The passive Ca2+ flux into the cytosol from the extracellular space (Jp,PM) is proportional to the throughput capacity of calcium channels, the number of open channels and the gradient of Ca2+ concentrations on both sides of PM:
The passive Ca2+ flux into the cytosol from SR (Jp,SR) is proportional to the throughput capacity of calcium channels, the number of open channels, and the gradient of Ca2+ concentrations on both sides of the SR membrane:
The active Ca2+ flux from the cytosol to the SR (Ja,SR) is determined by the calcium pump of SR:
Note that equations (27) and (29) (similar equations are often reported in the literature to describe passive transport, for example [7, 10, 28, 29, 44, 45, 51, 52]) indicate that calcium channels, both PM and SR, are permeable to Ca2+ in both directions. While under physiological conditions it is unlikely that the Ca2+ concentration in the cytosol would be higher than in the SR or in the extracellular space, under experimental conditions such cases are often observed. As an example, Ca2+ is completely removed from the extracellular space or SR stores are completely emptied. Under such conditions, active and passive transport can be carried out in one direction, and this must be taken into account in such studies. As a consequence of these fluxes, Ca2+ is distributed between the cytosol, the SR, and the extracellular space. Therefore, knowing the flux values, we can calculate how much Ca2+ is in the extracellular space, cytosol, and SR at any time point. The change of Ca2+ mass in the extracellular space mo(t) and in the SR mr(t) will be described by the following equations:
Thus, the mathematical model of non-stationary processes of Ca2+ transport through PM and membrane of SR induced by signal substance A is a Cauchy problem for the system of ordinary differential equations (17)-(26) and (34)-(36). The initial conditions are determined by the initial concentrations of substances: , , , , , , , , , , , , , where the surface concentrations , , and , in the basal state are determined by formulas (11) and (12), respectively.
Note that the parameters DPM, , , , VmPM, KmPM are not arbitrary values, but are related by equation (4). Therefore, by setting the values of , , , VmPM, KmPM, we unambiguously determine the throughput capacity coefficient DPM of calcium channel of PM (and the rate of SBF-PM). Similarly, relation (8) allows us to calculate the throughput capacity coefficient DSR of calcium channels of SR in the basal state. Thus, the basal state in our developed model makes it possible to “tune” the cellular system using throughput capacity coefficients of calcium channels so that passive and active transport through PM and the SR membrane are equilibrated, allowing basal concentrations to be maintained in cytosol, SR and extracellular space (100 nM, 1 mM and 1 mM, respectively). This basal state adjustment plays a very important role, since any stimulation of the cellular system generates a driving force to return the system to the basal state. The mathematical models of the steady state and non-stationary state of the myocyte are interrelated, because after the ending of the signal substance action, the cell system again returns to the same steady state (basal state) as before the beginning of the stimulation. In the steady state (basal state), the cell can remain for any length of time without visible changes in macroscopic parameters, in particular, Ca2+ concentration in cytosol and SR while Ca2+ concentration in the extracellular space remains unchanged (although the calcium pumps on PM and SR membrane are continuously functioning, pumping out Ca2+, which permanently permeates into cytosol from extracellular space and SR). The fact that the cell system can return to the same state as it was before the stimulation is an essential factor for describing the kinetics of cyclic processes in smooth muscle cells and understanding the driving forces of these processes. In addition, the proposed model illustrates the mechanism of initiation of transmembrane Ca2+ transport using signal substance A, which can be degraded by the enzyme. This approach makes it possible to naturally initiate the process of Ca2+ transport through PM and, at the same time, to limit the duration of action of the signaling substance on this process. Since the steady state is characterized by strictly defined values of Ca2+ concentrations in the cytosol, SR and in the extracellular space, and the cell system always restores the values of these concentrations when returning to the basal state, it is more suitable to compare the current concentrations with the basal level: Ccyt = [Ca2+]c / [Ca2+]c,b – how many times the Ca2+ concentration in cytosol changed in comparison with the basal level; Cret = [Ca2+]r / [Ca2+]r,b – how many times the Ca2+ concentration in SR changed in comparison with the basal level; Cout = [Ca2+]o / [Ca2+]o,b – how many times the Ca2+ concentration in extracellular space changed in comparison with the basal level.
For the extracellular space, where the calcium concentration changes insignificantly during the stimulation process, the difference between the current and basal Ca2+ concentrations was also used: Dout = [Ca2+]o – [Ca2+]o,b. Relative values were also used for signal substance concentration CA = [A] / [A]0, for determination of the number of calcium channels opened with signal substance on PM (in relation to the total number of calcium channels on PM) Ropen = [AR] / [R]all, and for determination of the number of open calcium channels of SR (in relation to the total number of calcium channels of SR) RRopen = [RRCa] / [RR]all.
To test the hypothesis that cytosolic Ca2+ at high concentrations can interact with open channels on the cytosolic side of PM, closing them and terminating Ca2+ entry into the cytosol from the extracellular space, we examined how many PM calcium channels are closed by cytosolic Ca2+ of those that were opened by the signaling substance:
In addition to the Ca2+ fluxes that were determined earlier (equations (27)-(30)), attention was also paid to the total Ca2+ fluxes through the PM (38) and the SR membrane (39)
Each of these fluxes are expressed in mol.dm-2.s-1. However, since these fluxes refer to a unit area of the corresponding membrane, it is difficult to estimate the contribution of each of them in the process of Ca2+ accumulation in the cytosol. Therefore, let us calculate all fluxes for the entire surface area of the corresponding membrane and obtain the absolute values of fluxes through the entire membrane (PM or SR), expressed in moles of Ca2+ transported per second. Afterwards the total Ca2+ flux through PM into cytosol from extracellular space will be expressed by equation (40), the total Ca2+ flux through PM into extracellular space from cytosol by equation (41), the total Ca2+ flux through SR membrane into cytosol from SR by equation (42), and the total Ca2+ flux through SR membrane from cytosol into SR by equation (43)
A positive JCyt value means that Ca2+ enters the cytosol, while a negative value means that Ca2+ is pumped out of the cytosol.
Comparison of the model parameter values with literature data
Let us first evaluate to what extent the process parameters within our model (presented in Table 1) correspond to the experimental data obtained in the study of real smooth muscle preparations. The average volume of smooth muscle is usually Vsm = 2000-4000 μm3 [29, 51], the sarcolemma area is Ssm = 1200-6000 μm2 [29], and the cell geometry is such that the Ssm / Vsm ratio is in range of 1 to 3 [29]. In our model, these parameters are 4000 μm3, 8000 μm2, and 2, respectively. Smooth muscle cells usually occupy 65 % of the muscle preparation [29]. In our model, the cell volume is equal to the volume of the extracellular space, so that the above ratio is 50 %. SR volume according to the literature is a few percent of smooth muscle cell volume (2-5 % [29], 6 % [54], 1.5-7.5 % [9, 18]) and surface area is 10-20 % of smooth muscle cell surface area [29]. In our model, the ratio of volumes and areas is an order of magnitude lower – 0.1 % and 0.7 %, respectively. The concentration of Ca2+ in the cytosol is usually approximately 10-7 M [9, 12, 17, 19, 28, 30, 35, 41, 45, 46, 51, 52], as in our model. In the extracellular space, the Ca2+ concentration is usually 1-2 mM [17-19, 22, 29, 30, 32, 34, 35, 46, 52]: in our model [Ca2+]r,b = 10-3 M. The following Ca2+ concentrations in SR were found in the literature: 0.1-0.3 mM [9, 19, 28, 35, 40], 0.3-1.0 mM [24], and 1.0-2.0 mM [17, 45], and in our model [Ca2+]r,b = 10-3 M. According to the data, myocytes contain on average from 106 (for the cardiac cell) [12] to 1.5.106 [44] ryanodine receptors. Assuming that the SR area is between 120 and 600 μm2 [29], the concentration of RyR on the SR membrane should be about 1600-12500 μm-2. Up to 106 [33] CRAC channels can be expressed on the PM of a single lymphocyte cell. It can be assumed that along with receptor-operated calcium channels, 1.5.106 calcium channels are present on the PM of the smooth muscle cell. Assuming that the myocyte plasma membrane area is between 1200 and 6000 μm2 [29], the concentration of calcium channels of all types on the PM should be approximately 250-1250 μm-2. In our model, the concentration of receptors on both the SR membrane and the PM is about 600 μm-2. The total number of calcium channels on the PM is 4816000 and on the SR membrane is 34050.
It is noted in the existing literature that part of the cytosolic Ca2+ is localized on the inner surface of PM [29, 30, 34]. Experimental measurements of the dissociation constant give a Ca2+ affinity value with PM (particularly for myometrium) of 5.6-8.7.10-5 M [29]. In [44] the following values of the kinetic constants were used for the calculations: the rate constant for the formation of the Ca2+ complex with PM is 1.108 M-1.s-1 and the rate constant for the dissociation of this complex is 1300 s-1, which gives a dissociation constant of 1.3.10-5 M; in [30] these values were respectively 2.2.106 M-1.s-1, 0.6 s-1 and 2.7.10-7 M. The corresponding values for our model are 1.109 M-1.s-1, 3.104 s-1, and 3.10-5 M. Usually, the binding of agonists to receptors is characterized by dissociation constants approximately 10-7-10-8 M [57]. In our model, the corresponding constant is 6.10-5 M. To calculate the kinetics of Ca2+ binding to the SR, the following constants were used in [44]: the forward reaction rate constant is 1.108 M-1.s-1 and the reverse one is 60 s-1, which gives a dissociation constant of 6.10-7 M. In our model, the corresponding constants are 1.108 M-1.s-1, 1.104 s-1, and 1.10-4 M. It has been found in experimental work that for the calcium pump of myometrial sarcolemma Km = 300-500 nM and Vm = 4-5 μM.min-1 or 60-80 nM.s-1 (with a Hill coefficient that can vary from 1 to 2) [29]. Shannon et al. [44] used values of Km = 500 nM and Vm = 2.2 μM.s-1 (with a Hill coefficient of 1.6), and in our model Km = 100 nM and Vm = 200 nM.s-1 (with a Hill coefficient of 1.0). For the calcium pump of SR Km = 0.3-1.2 μM, and the Hill coefficient can also take different values – in particular, its values of 1.2 and 1.7 were found for the SR fraction isolated from the smooth muscle cell of the pig coronary artery [29].
Table 1: Initial values of the kinetic model parameters *
Symbol |
Parameter meaning |
Value |
Dimension |
[Ca2+]o,b |
Ca2+ concentration in the extracellular space |
1 |
mM |
[Ca2+]r,b |
Ca2+ concentration in the sarcoplasmic reticulum |
1 |
mM |
[Ca2+]c,b |
Ca2+ concentration in the cytosol |
100 |
nM |
[R]all |
surface concentration of calcium channels (receptors) on PM |
0.01 |
nmole/dm2 |
[RR]all |
surface concentration of calcium channels (receptors) on the SR membrane |
0.01 |
nmole/dm2 |
[A]0 |
concentration of the signal substance introduced into the extracellular space |
0.01–10 |
μ? |
[F]0 |
concentration of the enzyme that degrades the signal substance |
20–30 |
n? |
Vo |
volume of extracellular space per myocyte |
4000 |
μm3 |
Vcell |
intracellular space volume (including SR volume) |
4000 |
μm3 |
Vc |
cytosolic volume |
3996 |
μm3 |
nr |
number of SR cisternae in the myocyte |
100 |
pieces |
Vr |
the volume of one SR cisterna |
0.04 |
μm3 |
Sr |
the surface area of the membrane of one SR cisterna |
0.5656 |
μm2 |
VSR |
total volume of all SR cisternae |
4 |
μm3 |
SSR |
total surface area of the membranes of all SR cisternae |
56.56 |
μm2 |
SPM |
surface area of plasma membrane of myocyte |
8000 |
μm2 |
μPM |
conductance gain coefficient of calcium channel of PM |
10 |
|
μSR |
conductance gain coefficient of calcium channel of SR |
50–2000 |
|
VmPM |
limiting rate of the calcium pump of PM |
200 |
nM/s |
VmSR |
limiting rate of the calcium pump of SR |
200 |
nM/s |
KmPM |
Michaelis constant of the calcium pump of PM |
100 |
nM |
KmSR |
Michaelis constant of the calcium pump of SR |
100 |
nM |
k1 |
rate constant of Ca2+ binding on the cytosolic side of calcium channels of PM (Ca2+-dependent inactivation) |
1.109 |
1/M.s |
k–1 |
rate constant of unblocking of calcium channels on the cytosolic side of PM, due to Ca2+ uncoupling |
3.104 |
1/s |
k2 |
rate constant of signaling substance binding by receptors of calcium channel on PM (receptor-dependent activation of calcium channels of PM) |
5.108 |
1/M.s |
k–2 |
rate constant of inactivation of calcium channels of PM due to termination of the action of the signal substance |
3.104 |
1/s |
k3 |
rate constant of binding of a signal substance by an enzyme that destroys it, with the formation of an enzyme-substrate complex |
2.108 |
1/M.s |
k–3 |
the rate constant of decay of the enzyme-substrate complex with signal substance regeneration |
3.103 |
1/s |
k4 |
rate constant of decomposition of the enzyme-substrate complex to products |
1.102 |
1/s |
k5 |
rate constant of Ca2+ binding to receptors of SR membrane (Ca2+-dependent activation of SR channels) |
1.108 |
1/M.s |
k–5 |
rate constant of inactivation of calcium channels SR, due to the detachment of calcium from the receptors of calcium channels of SR |
1.104 |
1/s |
* Please note that in the mathematical model represented by differential equations (17)-(26) and (34)-(36), [R], [RCa], [AR], [ARCa], [RR] and [RRCa] are surface concentrations, while [A], [F], [AF], [P], [Ca2+]o, [Ca2+]r and [Ca2+]c are bulk concentrations.
In [44], Km = 246 nM and Vm = 286 μM.s-1 (with a Hill coefficient of 1.787) were used for calculations, and in our model (the same as for the calcium pump of PM), Km = 100 nM and Vm = 200 nM.s-1 (with a Hill coefficient of 1.0). Here we emphasize that in our model the calcium pump is present in every SR cisterna, i.e., there are 100 pieces in total. An important generalizing parameter is the value of the slow Ca2+ flux into the cell from extracellular space in the basal state (i.e., SBF-PM) – this flux for smooth muscle cells is usually from 1.10-15 to 1.10-14 mol Ca2+/cm2.s [29]. In our model with the parameter values given in Table 1, in the basal state the flux into the cell through the PM (as well as the flux from the cell through the PM) is Jp,PM,b = – Ja,PM,b = 4.995.10-15 mol Ca2+/cm2.s, which corresponds to Jp,PM,t,b = – Ja,PM,t,b = 3.996.10-19 mol Ca2+/s i.e. 240560 calcium ions pass through PM in one and the other direction in one second (the same number of calcium ions are in the cytosol in the steady state, so that they can be completely renewed in one second; as can be seen, this flux is quite powerful, although it is called slow). Therefore, the total Ca2+ flux through PM in the basal state JPM,b = Jp,PM,b + Ja,PM,b = 0. In the steady state, the basal Ca2+ concentration in the cytosol (100 nM) is the reason that part of this Ca2+ binds to SR receptors, opening calcium channels of SR (9.99.10-15 mol/dm2 or 0.0999 % of all calcium channels on the SR membrane). These open channels, along with the SBF-SR, provide a passive Ca2+ flux into the cytosol from the SR Jp,SR,b = 7.0648.10-11 mol Ca2+/cm2.s (which corresponds to Jp,SR,t,b = 3.996.10-17 mol Ca2+/s or 24055920 calcium ions per second – a total of 2408000 calcium ions in the sarcoplasmic reticulum in the basal state), which is compensated by an equal in magnitude Ca2+ flux from the cytosol to SR, due to the functioning of the calcium pump of SR. It is known from the literature that the calcium flux through the SR membrane of skeletal muscle in the basal state is 1.10-13 - 1.10-12 mol Ca2+/cm2.s [29]. In the basal state, a part of Ca2+ from the cytosol is also consumed for binding to calcium channels on the inner side of the PM. Only 0.33 % of all calcium channels on the PM are bound to calcium cations on the inner side of the PM in the basal state (at the parameters given in Table 1).
Slow basal flow from extracellular space
There are different points of view in the existing literature regarding the existence of SBF-PM. While some authors register such flux in the studied cells [18, 29, 32, 51], others do not find it [6], arguing that Ca2+ ions have an extremely low permeability through the PM. However, in our opinion, it is unlikely from the thermodynamic point of view that with such a huge gradient of Ca2+ concentrations (almost four orders of magnitude) there would be no diffusive transfer of Ca2+ across the PM and the SR membrane. Apparently, even the presence of a charge on the PM cannot prevent this, since not calcium in the form of cations but molecules or ionic pairs that have no charge can penetrate through the cell membrane [26]. This flux can be seen in an increase in Ca2+ concentration in the cytosol when Ca2+ concentration in the extracellular space increases [6, 8, 49]. The presented model was developed for such myocytes in which SBF-PM exists. SBF-PM gives the model new fundamental properties: being a basic flux on which other fluxes are superimposed under stimulation conditions, it determines the parameters of functioning of calcium pump of PM, together with it is responsible for maintaining the basal level of Ca2+ concentration in cytosol and allows the system of calcium homeostasis to function fully without positive and negative feedbacks regulating functioning of calcium pump of PM.
The kinetics of Ca2+ concentration changes in the cytosol is determined by four fluxes [10, 51]: (i) total passive Ca2+ flux into the cytosol from the extracellular space through agonist-opened calcium channels of PM combined with SBF-PM (Jp,PM,t); (ii) total passive Ca2+ flux into the cytosol from SR, including the calcium-induced calcium release (Jp,SR,t); (iii) total active Ca2+ flux from the cytosol to the SR due to the functioning of the calcium pump of SR (Ja,SR,t); (iv) total active Ca2+ flux from the cytosol to the extracellular space, the value of which is determined by the parameters of the calcium pump of PM (Ja,PM,t). With the chosen parameters of calcium pumps of PM and SR, their initial rates in the basal state are 0.5.Vm, allowing for both upward and downward modulation.
Results and Discussion
First of all, we should note that, of course, it is quite difficult to fully investigate such a complex nonlinear model. As can be seen from Table 1, the model includes about thirty variables, the values of most of which may vary over a wide range, depending on the studied smooth muscle tissue, and for some (such as reaction rate constants) the experimental values in general are unknown. However, as a result of studies, two characteristic features of the model behavior were found, which can be briefly called a single cytosolic Ca2+ transient mode [2, 27] and an oscillatory mode [2, 47]. Any ratios of the variables always lead to one or the other mode (at least, we have not discovered any other modes).
Single cytosolic Ca2+ transient mode: the buffering role of SR
When the signal substance is in the extracellular space, it binds to the receptors of the PM, thus opening the calcium channels of the PM. Ca2+ from the extracellular space then enter the cytosol and involves SR in the process of Ca2+ accumulation in the cytosol. Depending on the ratio of the model parameters, SR can act both as a passive participant in the process of Ca2+ accumulation in the cytosol of the smooth muscle cell and play a major role in this process. If the conductance gain coefficient of calcium channel of SR is slightly higher than conductance gain coefficient of calcium channel of PM (50 versus 10), the process of Ca2+ accumulation in cytosol occurs practically thanks to extracellular Ca2+ (Fig. 1, curve 1), and SR plays the role of buffer accumulating part of Ca2+ that entered from cytosol (Fig. 1, curve 7). In this case, the Ca2+ concentration in SR does not decrease below the basal level during the whole process of stimulation (while the concentration of extracellular Ca2+ does not increase above the basal level during the whole process of stimulation (Fig. 1, curve 4); that is, the Ca2+ concentration in cytosol and in SR is changed exclusively on account of extracellular Ca2+).
At the same time, the Ca2+ concentration in SR first increases (up to 11.652 s, Fig. 1, curve 7; at this stage part of the Ca2+ from the cytosol is pumped into SR, slowing the increase in the cytosolic Ca2+ concentration) and then slowly decreases to the basal level in the process of establishing a steady state in the cell system (at this step part of the Ca2+ previously pumped into SR is relocated into the cytosol, slowing the decrease in the cytosolic Ca2+ concentration). At the time point when the cellular system returns to the basal state, all Ca2+ that was pumped into SR in the first step leaves SR and Ca2+ concentration in it returns to the basal level. The same takes place in the cytosol and extracellular space. Looking at the distribution of Ca2+ entering the cell from the extracellular space between cytosol and SR, it was found that the first portions of Ca2+ almost completely remain in cytosol, then the proportion of Ca2+ accumulated in cytosol decreases, reaching a minimum at 0.864 s (22.7 % of the total Ca2+ that enters from the extracellular space), and then increases again, reaching 35 % at 11.51 s (0.06 s earlier than the maximum Ca2+ concentration in the cytosol is observed, see Fig. 1, curve 1). In the further, the percentage of Ca2+ accumulated in the cytosol decreases again.
Figure 1: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curves 1, 2, 3), in extracellular space Dout = [Ca2+]o – [Ca2+]o,b (curves 4, 5, 6) and in SR Cret = [Ca2+]r / [Ca2+]r,b (curves 7, 8, 9) on time t at μSR = 50 (curves 1, 4, 7), μSR = 200 (curves 2, 5, 8), μSR = 400 (curves 3, 6, 9). [A]0 = 10 μ?, [F]0 = 20 ??. The values of other parameters are given in Table 1. The corresponding basal levels are indicated by the letter b
As can be seen in Fig. 1 (curve 1) the maximum cytosolic Ca2+ concentration is observed at 11.569 s (tmax = 11.569 s) and it is 2.83 times higher than the basal level (Ccyt,max = 2.83). The Ca2+ flux into cytosol from extracellular space Jp,PM reaches the maximal level (2.25 times more than basal level) at 0.0002 s when the number of calcium channels of PM opened by signal substance is maximal (Ropen = 0.139). In the further it gradually decreases, but the active Ca2+ transport through the PM Ja,PM keeps increasing until it reaches its maximum value at tmax = 11.569 c. At this time the maximum Ca2+ content in the cytosol is observed, which also causes the closure of the maximum number of calcium channels open by the signaling substance on the PM (Rclose = 0.0093), the opening of the maximum number of calcium channels on the SR membrane (RRopen = 0.0028) and the maximum rate of Ca2+ pumping into SR (Ja,SR by 48 % exceeds basal level). Both passive and active Ca2+ transport through the PM (fluxes Jp,PM and Ja,PM) decrease after time tmax = 11.569 s, but they decrease at different rates. Equality of the fluxes Jp,PM and Ja,PM (and, respectively, JPM = 0) is observed at 11.595 s (which is 0.026 s later than tmax). At the same time the minimum Ca2+ concentration in the extracellular space is also reached (Cout = 0.999443, see Fig. 1, curve 4). The maximum rate of Ca2+ pumping out of the cytosol into the extracellular space (JPM) is achieved only at 22.53-22.54 s, when Ja,PM is greater than Jp,PM by about 20 %. The highest rate of Ca2+ entry into the cytosol from the extracellular space (JPM) is observed at 0.0002 s, when Jp,PM is approximately 2.25 times greater than Ja,PM. Interestingly, the maximum Ca2+ flux from SR to cytosol (Jp,SR) is observed not at the time of opening the maximum number of calcium channels of SR, as one would expect, but somewhat later, at 11.609 s. This is because in addition to the number of open channels, the difference in Ca2+ concentrations in SR and cytosol also affects the flux value. The maximum Ca2+ concentration in SR (Fig. 1, curve 7) is observed at 11.652 s (Cret = 1.36). At this point, Jp,SR = Ja,SR and JSR = 0. The maximum rate of Ca2+ pumping out of the cytosol into the SR (JSR) is reached at 0.107 s, and the highest rate of Ca2+ flux from the SR into the cytosol (JSR) is reached at approximately 25.9 s.
If the fluxes due to passive (Jp,Cyt) and active transport (Ja,Cyt) are examined separately, we can see that both fluxes increase after stimulation, but Jp,Cyt increases faster, reaching a maximum of 11.481 s (Jp,Cyt = 5.96425.10-17 mol/s), whereas Ja,Cyt becomes maximum at tmax = 11.569 s (Ja,Cyt = 5.96420.10-17 mol/s). As a result, the total Ca2+ flux into the cytosol JCyt initially increases rapidly, reaching a maximum (JCyt = 4.9662.10-19 mol/s) at 0.00014 s then it begins to decrease (JCyt = 0 at tmax = 11.569 s), and after tmax the Ca2+ pumping out of the cytosol commences to prevail, reaching its maximum at 19.146 s (JCyt = –3.75.10-20 mol/s). Therefore, from the time when the signaling substance begins to work and until the steady state is established (agonist stimulation process), one cycle of filling/emptying of SR occurs: initially, part of the Ca2+ from the cytosol is pumped into the SR (pumping continues until the Ca2+ concentration in the cytosol reaches its maximum value), thus slowing the rapid increase in cytosolic Ca2+ concentration, and then, as Ca2+ begins to be pumped out of the cytosol, the SR slowly begins to return stored Ca2+ into the cytosol, slowing the rate of decrease in the cytosolic Ca2+ concentration. We can conclude that when Ca2+ enters the cytosol from the extracellular space slowly enough, the calcium pumping a part of Ca2+ into the SR, succeed in reducing the Ca2+ concentration in the cytosol to a level that is insufficient to provoke a massive release of Ca2+ from SR.
Single cytosolic Ca2+ transient mode: the role of SR in enhancing the calcium signal
When the conductance gain coefficient of the calcium channel of SR is increased up to 200 (Fig. 1, curves 2, 5, 8), we can see that during the agonist stimulation process the SR performs two cycles of filling/emptying of SR. Moreover, the role of SR in the process of Ca2+ accumulation in cytosol of the smooth muscle cell changes dramatically: it is no longer limited to the role of a buffer but starts to actively participate in the formation of the calcium signal in the cytosol. In the first step (up to label a in Fig. 1) SR (as in the previous case) pumps the part of Ca2+ that entered the cytosol from the extracellular space: the maximum rate of Ca2+ pumping into SR (JSR) is reached at 0.12 s, resulting in a minimum rate of Ca2+ entry into the cytosol (JCyt = 1.24623.10-19 mol/s), whereas the maximum rate of Ca2+ entry into the cytosol is observed at 0.00014 s (JCyt = 4.9689.10-19 mol/s). However, even before reaching the maximum Ca2+ concentration in the cytosol, Ca2+ begins to leave the the SR, moving into the cytosol. The influence of SR becomes prominent (i.e., JSR becomes positive) at 3.138 s (label a in Fig. 1), when the Ca2+ concentration in the SR reaches a maximum Cret = 1.1473 (Fig. 1, curve 8). Maximum rate of Ca2+ flux from SR to cytosol (JSR) is reached at 5.138 s and as a result the rate of Ca2+ flux into cytosol increases, reaching a maximum at 4.41 s (JCyt = 2.7984.10-19 mol/s), causing a sharp increase in cytosolic Ca2+ (although total passive Ca2+ flux into cytosol Jp,Cyt continues to increase up to 8.329 s, when it reaches its maximum). This leads to a change in the shape of the left branch of the kinetic dependence of the cytosolic Ca2+ concentration: it becomes S-shaped (Fig. 1, curve 2).
After 4.41 s, the total Ca2+ flux into the cytosol (JCyt) diminishes and becomes negative at 8.497 s, i.e. Jp,Cyt becomes less than Ja,Cyt (at this time Ja,Cyt becomes maximal and the Ca2+ concentration in the cytosol reaches its maximum Ccyt,max = 4.57 (Fig. 1, curve 2) at a moment earlier, at tmax = 8.496 c). At 8.56 s, the Ca2+ concentration in SR becomes minimal (but higher than the basal level – Cret = 1.033), and this moment (label c in Fig. 1, curve 8) can be considered as the beginning of the second cycle of filling/emptying of SR by Ca2+. During this step, Ca2+ again begins to be pumped out of the cytosol into SR at an increasingly accelerating rate until at 12.39 s the JSR reaches its maximum rate and at 12.803 s the total Ca2+ flux from the cytosol reaches its maximum (JCyt = –1.370.10-19 mol/s). Later, the rate of Ca2+ pumping into SR gradually decreases until at 18.762 s the JSR becomes positive (at the same time the maximum amount of Ca2+ accumulates in the SR again (Cret = 1.1474, see Fig. 1, curve 8)). From this point (label d in Fig. 1) the final step begins: when the Ca2+ concentration in the cytosol is relatively low (Ccyt = 2.24), the Ca2+ stored in the SR begins transporting into the cytosol, slowing the decrease in the cytosolic Ca2+ concentration. The maximum rate of Ca2+ flux into the cytosol from the SR (JSR) is observed at 27.3 s, after which it slowly decreases. Thus, the first cycle of filling/emptying of SR lasts from the beginning of stimulation until 8.56 s (label c in Fig. 1), when Ca2+ is first pumped out of the cytosol into SR (up to label a in Fig. 1) and then it returns to the cytosol from SR (from label a to label c in Fig. 1). The second cycle begins at 8.56 s (label c in Fig. 1) and continues until the system returns to the basal state: during this time, Ca2+ is first pumped out of the cytosol into the SR again (from label c to label d in Fig. 1) and then it returns to the cytosol (from label d to the end of the process in Fig. 1).
We can see from Fig. 1 (curve 8) that, as in the previous case (curve 7), during the agonist stimulation process, the Ca2+ concentration in SR does not decrease below the basal level, i.e., SR contributes to the increase in the cytosolic Ca2+ concentration actually at the expense of Ca2+ pumped into SR during the previous step of the agonist stimulation process, rather than from its initial (basal) calcium reserves. However, unlike the first case (with μSR = 50), when SR works in antiphase with the plasma membrane during the whole agonist stimulation process (decreasing the cytosolic Ca2+ concentration when PM works to increase this concentration, and, conversely, increasing the Ca2+ concentration in the cytosol, when Ca2+ is pumped out of the cytosol by the calcium pump of PM), in the second case (with μSR = 200) SR begins to work synchronously with PM during a certain time (in the middle of the agonist stimulation process), amplifying its action (their joint activity allows Ca2+ to accumulate in the cytosol from 3.138 to 8.39 s and then leave the cytosol between 8.56 and 18.76 seconds). If the distribution of Ca2+ entering the cell from the extracellular space between cytosol and SR is considered, then in this case initially Ca2+ completely remains in cytosol, later the percentage of Ca2+ accumulated in cytosol is decreasing (because some Ca2+ is pumped into SR), reaching a minimum at 0.58 s (30.5 % of the total Ca2+ entered from the extracellular space), and again begins to increase, reaching 92 % at 8.55 s (this increase from 30.5 to 92 % is achieved by the Ca2+ pre-stored in SR). Subsequently, the percentage of Ca2+ accumulated in the cytosol decreases again.
However, it is known from the literature that because of Ca2+ release into the cytosol, the SR is emptied. This phenomenon is observed only at higher values of the conductance gain coefficient of calcium channel of SR. At the value of this coefficient equal to 400, the Ca2+ release from SR becomes so significant that the Ca2+ concentration in SR decreases markedly below the basal level (the maximum decrease Cret = 0.663 is observed at 6.7 s, see Fig. 1, curve 9): an avalanche-like release of Ca2+ from SR begins. In this case, the maximum Ca2+ concentration in the cytosol is Ccyt,max = 6.76 at tmax = 6.663 s (Fig. 1, curve 3). Analysis of Fig. 1 allows to conclude that with the increase of the conductance gain coefficient of the calcium channels of SR the maximum amount of accumulated Ca2+ in SR and the pumping time (up to reaching the maximum Ca2+ concentration in SR) decreases in the first cycle of filling/emptying of SR (Cret = 1.1473 at 3.138 s for μSR = 200 (point a on curve 8) and Cret = 1.0509 at 1.121 s for μSR = 400 (point e on curve 9)), and pumping in the second cycle occurs later and later (Cret = 1.1474 at 18.762 s for μSR = 200 (point d on curve 8) and Cret = 1.0513 at 21.888 s for μSR = 400 (point g on curve 9)). The results for μSR = 50 (Cret = 1.36 and t = 11.652 s) can be interpreted as a condition where the first and second cycles have not yet separated.
Appearance of cytosolic Ca2+ concentration oscillations
It can be seen from Fig. 2 that with a further increase in the conductance gain coefficient of the calcium channel of SR a qualitative change in the kinetics of the process is observed – the cell system switches to oscillatory mode.
Moreover, the number of oscillations increases with the increase of the conductance gain coefficient of the calcium channels of SR. The process of appearance of new oscillations has the following scheme: at first, the small rapidly damped oscillations appear (curves 1, 3, 5), and then, with the increase of the conductance gain coefficient of the calcium channels of SR, initially the amplitude of the first oscillation increases to a certain level (curves 2, 4, 6), then the second, and so on (however, it is very difficult to explain why the kinks appear in certain places of the smooth kinetic dependences, which then turn into peaks – we can only state that it happens due to the nonlinearity of the system). A series of large-amplitude oscillations is followed by several rapidly decaying oscillations with much smaller amplitudes. There are cases when during the whole the process, the Ca2+ concentration in SR and in the extracellular space practically does not exceed the corresponding basal level (Fig. 2, curves 5 and 3, respectively), but more typically the process proceeds so that the Ca2+ concentration both in the SR and in the extracellular space varies within a relatively wide range, both exceeding the basal level and decreasing below it (similar to curve 4 in Fig. 2).
Figure 2: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curves 1, 2), in the extracellular space Dout = [Ca2+]o – [Ca2+]o,b (curves 3, 4) and in SR Cret = [Ca2+]r / [Ca2+]r,b (curves 5, 6) on time t at μSR = 800 (curves 1, 3, 5), μSR = 1200 (curves 2, 4, 6). [A]0 = 10 μ?, [F]0 = 20 ??. The values of other parameters are given in the Table 1. The corresponding basal levels are marked by the letter b
Periodic oscillation mode
It is known from the literature that at low (physiological) concentrations of the active substance (in particular, hormones) the cytosolic calcium signal appears as repeated discrete peaks (spikes) [35]. Fig. 3 shows such a process. Let us note at once that the dependence of cytosolic Ca2+ concentration on time (curve 1) shown in Fig. 3 corresponds well in its shape, amplitude, and frequency to the experimentally obtained dependencies given in the articles [20, 21, 54]. The authors of the article [21] investigating the rhythmic increases of cytosolic Ca2+ distinguish three phases in the obtained curves. In phase 1, there is a slow gradual increase in the cytosolic Ca2+ concentration up to a certain critical level (approximately 20 % of the amplitude of the cytosolic calcium signal), after which a rapid increase in the cytosolic Ca2+ concentration begins. According to the authors, this phase reflects some kind of rhythm-driven process. In phase 2, the cytosolic Ca2+ concentration increases rapidly until it reaches its peak value. As suggested by the authors, this is a consequence of Ca2+ release from the SR. In phase 3, the cytosolic Ca2+ concentration decreases from the maximum level to practically the basal level. The authors believe that this phase is a consequence of Ca2+ pumping out of the cytosol by the calcium pump of SR. They note that for rabbit portal vein the frequency of oscillations was 0.02-0.1 Hz, i.e., 1 oscillation per 10-50 s [21]. For hepatocytes, it was found that 1 oscillation lasted from 20 to 240 s, depending on the IP3 concentration [20]. Let us analyze in more detail how cytosolic Ca2+ concentration oscillations arise.
Figure 3: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curve 1), in extracellular space Dout = [Ca2+]o – [Ca2+]o,b (curve 2), in SR Cret = [Ca2+]r / [Ca2+]r,b (curve 3) on time t and the change in signal substance concentration CA = [A] / [A]0 (curve 4) over time at μSR = 2000, [A]0 = 10 ??, [F]0 = 30 ??. The values of other parameters are given in the Table 1. The corresponding basal levels are marked with the letter b
Initial step: Ca2+ entering into the cytosol through the PM and pumping it out of the cytosol into the SR
As a consequence of the action of the signaling substance, the calcium channels on the PM are opened (the maximum number of all calcium channels located on the PM (0.016 %) opens at approximately 0.00026 s) and Ca2+ begins to enter the cytosol.
Figure 4: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curve 1) on time t, as well as changes of total Ca2+ flux through PM JPM (curve 2), passive Ca2+ flux from SR Jp,SR (curve 4), active Ca2+ flux into SR Ja,SR (curve 5) and total Ca2+ flux through the SR membrane JSR = Jp,SR + Ja,SR (curve 3) in time (in the initial period of the agonist stimulation process) at μSR = 2000, [A]0 = 10 nM, [F]0 = 30 nM. The values of other parameters are given in Table 1. The corresponding basal levels are marked with the letter b
The maximum Ca2+ flux into the cytosol through the calcium channels of PM Jp,PM (as well as JPM) is observed when the maximum number of calcium channels of PM are opened (Fig. 4, curve 2). At the same time, additional Ca2+ entering the cytosol from the extracellular space begins to be pumped out of the cytosol into the SR (Fig. 4, curve 3), but this lasts only about 0.0004 s. The maximum rate of pumping into the SR (i.e., the maximum JSR) is reached at 0.00017 s. The phenomenon of Ca2+ concentration increase in SR before the calcium-induced calcium release was noted in [15].
Calcium-induced calcium release from SR
An elevated concentration of Ca2+ in the cytosol causes an increase in the rate of the calcium pump of SR, which, together with the calcium pump of the PM, begins to pump out of the cytosol the Ca2+ entering from the extracellular space. However, as can be seen in Fig. 4, because of the uncompensated passive and active transport from SR, after 0.0004 s there is an increasing flux of Ca2+ into the cytosol from the SR, which accelerates the accumulation of Ca2+ in the cytosol. This indicates that the calcium pumps of PM and SR do not have enough time to pump the cytosolic Ca2+ that enters from the extracellular space and SR. As a result, excess Ca2+ opens additional calcium channels of SR (compared to the number of open channels in the steady state), which begin to rapidly pass Ca2+ from the SR into the cytosol. Starting at 0.00043 s (Fig. 4, curve 3), the Ca2+ flux from the SR into the cytosol (Jp,SR) increases up to 1.389 s (Fig. 5, curve 3), when at its maximum it exceeds the basal level by 2.07 times. The Ca2+ concentration in the cytosol increases rapidly by several times (in the given case, by a factor of 6.8 (Fig. 5, curve 1)) at the moment of reaching the maximum Ca2+ concentration in the cytosol (1.54 s after the beginning of the agonist stimulation process). It was surprising that the maximum Ca2+ flux from SR to cytosol (Jp,SR) did not coincide in time with the moment of opening of the maximum number of calcium channels on the SR membrane (1.389 and 1.54 s, respectively). This is due to the fact that the magnitude of this flux depends not only on the number of open channels, but also on the difference in Ca2+ concentrations between the SR and the cytosol. If the number of open calcium channels increases, the concentration gradient decreases and, as a result, the maximum flux from SR is observed 0.151 s earlier than the moment of opening of the maximum number of calcium channels of SR.
It remains unclear to researchers why the Ca2+ entry into the cell from the extracellular space is not in phase with the Ca2+ release from SR [5]. Our calculations show that the maximum rate of Ca2+ entry into the cytosol from the extracellular space (Jp,PM) is reached very quickly (Fig. 4, curve 2) and is observed at the moment of opening of the maximum number of calcium channels of PM at 0.00026 s. At this time, the Ca2+ flux from SR (Jp,SR, Fig. 4, curve 4) is still not significantly higher than the basal level, as well as the Ca2+ flux from the cytosol into SR (Ja,SR, Fig. 4, curve 5).
Figure 5: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curve 1) on time t, as well as changes of active Ca2+ flux in SR Ja,SR (curve 2) and passive Ca2+ flux from SR Jp,SR (curve 3) in time at μSR = 2000, [A]0 = 10 nM, [F]0 = 30 nM. The values of other parameters are given in Table 1. The corresponding basal levels are marked with the letter b
However, Ja,SR exceeds Jp,SR in magnitude, and Ca2+ pumping out of the cytosol into the SR occurs at the time point in question (JSR is negative, Fig. 4, curve 3). Jp,SR begins to exceed Ja,SR only starting from 0.00043 s (although both fluxes continue to increase) and Ca2+ starts to be released from SR into cytosol at an increasing rate, opening more and more calcium channels on the SR membrane. The maximum number of open calcium channels of SR (which directly depends on the cytosolic Ca2+ concentration) will be at the time when the maximum Ca2+ concentration in the cytosol is reached at 1.54 s (Fig. 5, curve 1). However, Ca2+ release from the SR lowers Ca2+ concentration in the SR, so the maximum Ca2+ flux from the SR (Jp,SR) will be observed slightly earlier, at 1.389 s (Fig. 5, curve 3). Note that at 1.54 s, when the maximum number of the calcium channels of SR opens (RRopen = 0.00675, i.e., about 230 calcium channels), the Ca2+ flux from SR to cytosol (Jp,SR) exceeds 1.75 times the basal level, and the Ca2+ concentration in SR is several times below the basal level (in the given case 36 % Ca2+ remains in SR (Fig. 3, curve 3) relative to basal level). Thus, as a result of the opening of the calcium channels of SR, not all Ca2+ contained in the SR is released, but although quite a significant amount of Ca2+ remains in SR, process of the calcium-induced calcium release is terminated.
How the process of calcium-induced calcium release from SR into cytosol is terminated is widely discussed in the literature [11, 17, 24, 33, 45, 48]. After all, it seems that the more Ca2+ is in the cytosol, the more calcium channels on the SR membrane open, which leads to the release of even more Ca2+ from SR into the cytosol, and it is not clear how this avalanche-like process can be terminated [58]. Three hypotheses have been made about the causes of CICR termination [45]: 1) all Ca2+ is released from SR; 2) there is Ca2+-dependent inactivation of RyR after Ca2+ release from SR, which requires a Ca2+ concentration in cytosol of 10 mM; 3) all calcium channels (RyR) are closed simultaneously by statistical chance. However, all these reasons are considered by the authors to be highly unlikely. In this regard, let us analyze in detail how CICR termination occurs.
Ca2+ fluxes: some trends
In the basal state, because of the presence of 100 nM Ca2+ in the cytosol, about 34 channels of all 34050 are open on the SR membrane. The Ca2+ flux from the SR through these channels is fully compensated by the activity of the calcium pumps of SR (Jp,SR,b = Ja,SR,b = 7.065.10-11 mol.cm-2.s-1). The opening of calcium channels of PM by signaling substance leads to Ca2+ entry into the cytosol, which unbalances the fluxes established in the basal state: the Ca2+ flux from the cytosol into the extracellular space (Ja,PM) and into SR (Ja,SR) increases due to the increase of cytosolic Ca2+ concentration (Fig. 4, curve 5), the Ca2+ flux from SR to cytosol (Jp,SR) increases (although to a lesser extent than Ja,SR) because of the increased Ca2+ concentration in SR and the opening of additional calcium channels on SR membrane (Fig. 4, curve 4). However, all these fluxes are changed differently over time, resulting in the complex behavior of the whole system. However, we can observe that (within our model) the number of open calcium channels on SR membrane (RRopen), the number of calcium channels closed by Ca2+ on the PM (Rclose), Ca2+ fluxes from the cytosol into the extracellular space (Ja,PM and Ja,PM,t, Fig. 6, curve 2) and into the SR (Ja,SR and Ja,SR,t, Fig. 5, curve 2), and hence the active Ca2+ flux from the cytosol (Ja,Cyt, Fig. 7, curve 4) are completely determined by the cytosolic Ca2+ concentration (see Table 2).
Maximum and minimum values of cytosolic Ca2+ concentrations (as well as other above-mentioned parameters) are observed at the moments when JCyt = 0. Ca2+ fluxes into the cytosol from the extracellular space (Jp,PM and Jp,PM,t) are predominantly determined by the number of open channels on the PM (Ropen). The total Ca2+ flux through the SR membrane JSR is zero at the time points when the Ca2+ concentration in the SR (Cret) reaches the maximum or minimum value. In oscillatory processes, Ca2+ fluxes from SR to cytosol (Jp,SR and Jp,SR,t) and passive Ca2+ flux to cytosol (Jp,Cyt) change synchronously, which is explained by two orders of magnitude higher values of Jp,SR,t compared to Jp,PM,t (see Table 2). With the aim of gaining a clearer understanding of how the oscillatory process is carried out, Table 2 presents the numerical values of Ca2+ concentrations in the extracellular space, cytosol, and SR, as well as different Ca2+ fluxes at the time points when some of them reach the maximum, minimum, or basal level. Based on the data in Table 2, the sequence of events occurring in the cellular system during the oscillatory process can be traced.
Figure 6: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curve 1) on time t as well as changes of active Ca2+ flux from cytosol to extracellular space Ja,PM (curve 2) and passive Ca2+ flux from extracellular space to cytosol Jp,PM (curve 3) in time at μSR = 2000, [A]0 = 10 nM, [F]0 = 30 nM. The values of other parameters are given in Table 1. The corresponding basal levels are marked with the letter b
How calcium-induced calcium release from the SR is terminated
A rapid elevation of cytosolic Ca2+ concentration significantly increases the rate of the calcium pumps of PM and SR: the rate of both increases by about 74.4 % at tmax,1 = 1.54 s after the start of stimulation. When the maximum Ca2+ concentration in the cytosol is reached (Ccyt,max,1 = 6.8), the passive Ca2+ flux into the cytosol through the calcium channels of PM and SR (Jp,Cyt) and the active Ca2+ flux from the cytosol driven by the calcium pumps of PM and SR (Ja,Cyt) become equal (JCyt = 0) (see Fig. 7). At this time SR is emptied by almost a third (Cret = 0.36), therefore, although the number of calcium channels open on the SR membrane at this time is maximal, the Ca2+ flux from SR to cytosol (Jp,SR) already decreases for 0.15 s (and during this time it decreases by 15 % of the maximal level).
Figure 7: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curve 1) on time t as well as changes of total active Ca2+ flux from cytosol Ja,Cyt (curve 4), total passive Ca2+ flux into cytosol Jp,Cyt (curve 3) and total JCyt (curve 2) in time at μSR = 2000, [A]0 = 10 nM, [F]0 = 30 nM. The values of other parameters are given in Table 1. The corresponding basal levels are marked with the letter b
Table 2: Passive and active Ca2+ fluxes across the entire plasma membrane area (Jp,PM,t and Ja,PM,t, respectively) and sarcoplasmic reticulum membrane area (Jp,SR,t and Ja,SR,t, respectively), total Ca2+ flux across these membranes (JPM.SPM and JSR.SSR, respectively), passive, active, and total Ca2+ fluxes into the cytosol (Jp,cyt, Ja,cyt and Jcyt, respectively), and Ca2+ concentration changes in the extracellular space, cytosol and in the SR (Dout = [Ca2+]o – [Ca2+]o,b, Ccyt = [Ca2+]c / [Ca2+]c,b, Cret = [Ca2+]r / [Ca2+]r,b, respectively) at different time points t (s). All fluxes are mol.s-1 in dimension, and Dout, Ccyt, Cret indicate changes in Ca2+ concentration relative to the basal level
a-model-of-calciuminduced-calcium-t1.html![]() |
The active flux from the cytosol (Ja,Cyt) at this time reaches the maximum level and becomes equal in magnitude to the passive flux into the cytosol (Jp,Cyt), which, like the Jp,SR flux, decreases as early as 0.15 s (see Fig. 5 and Table 2). As a result JCyt = 0 and Ca2+ accumulation in cytosol is terminated. Thus, although it appears that Ca2+ should be released into the cytosol from the SR at an accelerating rate, in fact, at a certain point in time the contribution of the number of open calcium channels on the SR membrane that can be opened at a given concentration of Ca2+ in the cytosol can no longer exceed the effect of the decreasing Ca2+ concentration in SR (see equation (29)). This leads to the fact that the passive Ca2+ flux into the cytosol (Jp,Cyt), after passing through the maximum, begins to decrease (Fig. 7, curve 3).
Ca2+ pumping out of cytosol below basal level
Since 1.54 s, when JCyt = 0, the process of Ca2+ pumping out of the cytosol is started. Note that the Ca2+ pumping out of the cytosol by the calcium pumps of the PM and SR is started immediately after begins to enter the cytosol, but, nevertheless, up to 1.54 s the passive Ca2+ flux into the cytosol Jp,Cyt exceeded the active Ca2+ flux from the cytosol Ja,Cyt (see Table 2). After 1.54 s, both calcium fluxes decrease (Jp,Cyt up to 4.030 s and Ja,Cyt up to 4.043 s), but the passive Ca2+ flux into the cytosol decreases more intensively than the active Ca2+ flux (Fig. 7, curves 3 and 4, respectively), so that JCyt becomes less than zero (Fig. 7, curve 2), i.e., Ca2+ is pumped out of the cytosol (the maximum pumping rate is reached at 3.89 s and continues up to 4.043 s, see Table 2). As a result, the cytosolic Ca2+ concentration sharply decreases (Fig. 7, curve 1), and this occurs so quickly that at tmin,1 = 4.043 s it drops several times below the basal level (approximately 3 times in the analyzed case, Ccyt,min,1 = 0.34).
Why does this happen? At the time when the Ca2+ concentration in the cytosol reaches the basal level (at approximately 3.903 s), the Ca2+ concentration in the extracellular space Cout maximally exceeds the basal level (Fig. 3, curve 2), while in SR the Ca2+ concentration (Fig. 3, curve 3) has not yet reached the basal level (it will be reached only at 6.901 s). At this time, there are driving forces (due to the concentration gradients) for Ca2+ transport from the extracellular space to the cytosol (Fig. 8, curve 2, JPM is positive, even if there are no calcium channels open with the signal substance on the PM; see equation (27)) and from the cytosol to SR (JSR is negative, Fig. 8, curve 3), because the Ca2+ flux from the cytosol to SR (Ja,SR) is equal to the basal level, according to equation (30), and the Ca2+ flux from SR to cytosol (Jp,SR ) is less than the basal level, according to equation (29) (see Table 2). However, because the Ca2+ flux from the cytosol to the SR (JSR) is greater than the Ca2+ flux from the extracellular space to the cytosol (JPM) (at 3.903 seconds, see Table 2), the Ca2+ concentration in the cytosol decreases below the basal level. Only at 4.043 s JSR = JPM and JCyt = 0, resulting in the termination of further decrease of cytosolic Ca2+ concentration. However, the above-mentioned driving forces did not disappear, but only changed their intensity.
Figure 8: Dependences of Ca2+ concentration in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b (curve 1) on time t as well as the change in total Ca2+ flux through PM JPM (curve 2) and total Ca2+ flux through SR membrane JSR (curve 3) in time at μSR = 2000, [A]0 = 10 nM, [F]0 = 30 nM. The values of other parameters are given in Table 1. The corresponding basal levels are marked with the letter b
As a result of the increase of Ca2+ concentration in the SR (approaching but not exceeding the basal level), the Ca2+ flux from the cytosol to the SR (JSR) becomes less than the Ca2+ flux from the extracellular space to the cytosol (JPM) (although the Ca2+ concentration in the extracellular space decreased, also approaching the basal level). Consequently, slow increase of Ca2+ concentration in the cytosol is started coupled with an increase of Ca2+ concentration in the SR (Fig. 3, curves 1 and 3, respectively). Thus, due to the action of the above-mentioned driving forces, the SR refilling at the expense of extracellular Ca2+ is started in the cell system. Note that the low intensity of these forces (caused by relatively small deviations of Ca2+ concentrations in the cytosol, extracellular space, and SR from the basal values) leads to a very slow increase of the cytosolic Ca2+ concentration.
SR refilling: analogy with the SOCE process
Since the time of 4.043 s, when the JCyt flux becomes positive and Ca2+ predominantly enters the cytosol (see Table 2), the next step of the process begins: the Ca2+ concentration in the cytosol, SR, and extracellular space slowly approaches the basal level (see Fig. 3). At this step, the Ca2+ concentration in the cytosol slowly increases, remaining below the basal level (the basal level is reached only at 9.942 s), as well as the Ca2+ concentration in the SR (reaching the basal level already at 6.901 s). Afterwards it begins to exceed the basal level and the maximum excess is observed at 8.997 s (Cret = 1.029), i.e., before the cytosolic Ca2+ concentration reaches the basal level. At the same time, the Ca2+ concentration in the extracellular space is constantly decreasing (the basal level is reached at 9.015 s, and the minimum level at 9.942 s) and, in general, the situation at this step can be interpreted as functioning of SOCs – at very low cytosolic Ca2+ concentration, not exceeding basal level, SR is filled by Ca2+ entering from extracellular space [4, 5, 11, 34, 35, 38, 48]. As can be seen, the effect of the SR refilling by extracellular Ca2+ can be explained without the use of additional intracellular components. There is no need to consider the existence of a direct connection of the SR to the extracellular space [4, 5, 35] or a special intracellular messenger [4, 5, 35] or G-protein [4, 5], or protein interactions between receptors of calcium channel of SR and calcium channels of PM [4, 5], or vesicles with proteins of SOCs [4], or differences in cytosolic Ca2+ concentrations in the volume and near the PM [4]. All the components listed above are absent from our model. Observed effect is purely kinetic, arising as a result of an excess of Ca2+ in the extracellular space compared to the basal state, while there is a Ca2+ deficiency in the SR at the same time (pumped out of the cytosol into the extracellular space during CICR) – thus generating driving forces to refill the SR at the expense of extracellular Ca2+.
The next massive Ca2+ release from the SR into the cytosol
At 9.942 s, when Ca2+ concentration in the cytosol reaches its basal level (Ccyt = 1), the extracellular Ca2+ concentration is at its minimum, i.e., below the basal level, while the Ca2+ concentration in the SR still exceeds the basal level (Cret = 1.0089) (see Fig. 3 and Table 2). At this time, the situation is the exact opposite of the one observed at 3.903 s: there are driving forces for Ca2+ transport from the cytosol to the extracellular space (JPM becomes negative at 9.942 s and reaches its maximum value (in absolute value) at 10.447 s) as well as from SR to cytosol (JSR is positive, because the Ca2+ flux from cytosol to SR Ja,SR is equal to basal, while the Ca2+ flux from SR to cytosol Jp,SR is greater than basal level). Ca2+ flux from the SR to the cytosol (JSR) increases approximately 50-fold from 9.942 to 10.287 s (when the JSR reaches its maximum value) (Fig. 8, curve 3). In this way, the next massive Ca2+ release from the SR into the cytosol occurs. Ca2+ release continues until 10.447 s (see Table 2), when the Ca2+ concentration in SR becomes practically minimal (Cret = 0.355). As a result of this Ca2+ release, the Ca2+ concentration in the extracellular space increases, overcoming the basal level at 10.319 s, and the Ca2+ concentration in the cytosol reaches a maximum at tmax,2 = 10.447 s (Ccyt,max,2 = 6.966) (see Fig. 3). At this time Ja,Cyt reaches its maximum value, but Jp,Cyt passed its maximum almost 0.15 s earlier, and these fluxes become equal: as a result, JCyt = 0 and Ca2+ accumulation in the cytosol is terminated (see Fig. 7). This is the end of the cycle of Ca2+ release from SR into the cytosol and a new cycle of Ca2+ pumping out of the cytosol is started. The periodic oscillation mode is possible only when there are three compartments. When two compartments exist, this mode is not observed [56]. Periodic oscillations arise because in the cellular system Ca2+ concentration cannot reach the basal level in the three compartments simultaneously. Instead, Ca2+ constantly "flows" from the extracellular space into the sarcoplasmic reticulum and back through the cytosol, causing oscillations not only of cytosolic Ca2+, but also of extracellular Ca2+ and Ca2+concentration in the SR. The oscillatory mode involves all compartments.
Maintaining calcium balance during cell stimulation
It can be seen that tuning through the basal state allows the cellular system to return exactly to the initial state after finishing the agonist stimulation. This permits us to answer the question raised in [35]: how is it possible that the amount of Ca2+ passing through the SOCs is exactly equal to the amount of Ca2+ received by the SR, so that from extracellular space enters the cell exactly the same amount of Ca2+ that then leaves it during agonist stimulation? This is now obvious: due to the return of the cellular system strictly to its initial state the above-mentioned Ca2+ balance is maintained. If we assume that in the SOCE process the Ca2+ concentration in the cytosol does not change and is equal to the basal one, then the amount of Ca2+ entering the cell from the extracellular space (lowering the Ca2+ concentration in the extracellular space from the excess level to the basal one) will be exactly equal to the amount of Ca2+ that will be received by the SR (due to increase of Ca2+ concentration in the SR from the reduced level to the basal one), because Ca2+ does not disappear anywhere, but is only redistributed between the extracellular space, cytosol and SR. Actually, as it was mentioned above, the possibility of Ca2+ redistribution between these three compartments creates the possibility of cytosolic Ca2+ oscillations: after removing any of these three compartments (i.e., removing one of the membranes) the cell system cannot switch into oscillatory mode [56]. Therefore, we can agree with [20] that the oscillatory mode must be accompanied by oscillations of the extracellular Ca2+ concentration and with [34] that Ca2+ entry through CRAC channels is necessary to maintain Ca2+ oscillations in the cytosol.
A small number of calcium channels on the plasma membrane opened by the agonist are closed by cytosolic Ca2+
Analysis of the model shows that there is no special need to involve the idea that cytosolic Ca2+ must close the calcium channels of the PM to terminate Ca2+ flow from the extracellular space. Indeed, the results show that despite rather high values of the rate constant of Ca2+ binding to the PM, the percentage of closed channels of the PM by cytosolic Ca2+ is negligible (in the basal state Rclose = 0.003322, i.e. only 0.33 % of the calcium channels are closed, and the maximum number of closed channels is observed at tmax,2 = 10.447 s – 2.27 % of all those opened with the signal substance).
The agonist binds with a small number of receptors
It is also important to emphasize that in spite of high values of the rate constants of signal substance binding with the receptors of calcium channel on PM and cytosolic Ca2+ with the receptors of calcium channel on SR membrane, the number of open channels on the PM and SR membrane remains rather insignificant. As shown earlier, in the basal state (i.e., at a cytosolic Ca2+ concentration of 100 nM), 34 or 0.0999 % of 34050 calcium channels of SR are open. The maximum number of SR channels open at tmax,2 = 10.447 s – RRopen = 0.0069, i.e. 236 or 0.69 %. This value is in good agreement with the literature, which suggests that the number of ryanodine receptors that bind with Ca2+ (when Ca2+ flux from the SR is maximal) is 1-2 % [44]. The maximum number of open calcium channels on PM at [A]0 = 10 nM is 773 out of approximately 4.816.106 located on the PM, which is approximately 0.016 % (Ropen = 0.00016). At an agonist concentration of 1 μM, approximately 1.5 % of the Ca2+ channels on the PM may be open. In the literature, it is reported that the maximum response is usually observed when the agonist binds with 2-3 % of the PM receptors [19, 57]. Despite such a small number of opening Ca2+ channels, the process of Ca2+ accumulation in the cytosol proceeds comparable with the experiment.
How many calcium cations are needed to start CICR and can so much Ca2+ from a calcium-free solution enter the cytosol?
Let us return to the process of calcium-induced calcium release and analyze the known facts taking into account the results obtained in the study of our model. It is known that when a smooth muscle cell is stimulated by agonists in a calcium-free environment, Ca2+ release from SR is observed [35]. Based on this fact, it can be concluded that calcium channels on SR membrane are not opened by Ca2+ (which as it is believed is absent in the external solution), but indirectly by IP3. As our model shows, the opening of Ca2+ channels on SR membrane can also be performed by Ca2+, because it requires only a few, tens or hundreds of free calcium cations (as shown above the whole process of calcium-induced calcium release within our model is performed under conditions when only 202 Ca2+ channels open on the SR membrane in addition to the basal level, i.e. only 202 calcium cations bind with the RyR when the maximum Ca2+ concentration in cytosol is reached) that always exist in the external solution (due to the existence of thermodynamic equilibrium).
It is difficult to calculate the amount of calcium cations required to initiate the CICR process because Ca2+ simultaneously enters the cytosol from the extracellular space and SR and at the same time is pumped out of the cytosol into SR and the extracellular space. However, if we take the Ca2+ flux into the cytosol from the extracellular space, which changes relatively little during the process, equal to approximately Jp,PM = 4.10-19 mol/s, and calculate how many calcium cations will enter the cytosol during 0.0004 s (approximately until the Ca2+ flux from SR to cytosol begins to exceed the Ca2+ flux from cytosol to SR (see Fig. 4), that is, when JSR flux becomes positive), we get 96 calcium cations. Thus, an increase in the Ca2+ content of the cytosol with only 96 calcium cations is enough to provoke the process of Ca2+ release from the SR (naturally, with the parameters we chose for our calculations). It is known that Krebs solution without the addition of Ca2+or so called “calcium-free” medium actually contains about 1.10-5 M Ca2+ and addition of 0.1 mM EGTA lowers Ca2+ concentration to about 1.10-8 M [8]. It can be calculated that at a concentration of 1.10-5 M Ca2+ there are about 24 million calcium cations in the extracellular space in a free state, and at a concentration of 1.10-8 M there are 2.4.104 (if the volume of extracellular space is 4 picoliters, as in the framework of our model). Therefore, one cannot assume that the calcium-free medium is completely free of calcium ions, and our model shows that much fewer calcium cations than are contained in the calcium-free medium may be required to initiate the calcium-induced calcium release from the SR.
What studies can be carried out using the developed calcium-induced calcium release model?
In order to model how the cytosolic Ca2+ signal depends on the agonist in vivo, it is necessary to consider the presence of an agonist-degrading enzyme in the cell system, which allows it to return to its initial state after termination of stimulation. The above results refer to this type of study. As can be seen, an increase in the conductance gain coefficient of the calcium channel of SR favors the appearance of an oscillatory mode. At small values of the conductance gain coefficient of calcium channel of SR (μSR = 50) in the cell system the oscillatory mode is not realized (see Fig. 1), and the amplitude of the calcium transient in the cytosol increases with increasing agonist concentration. At low agonist concentrations, the change in Ca2+ concentration in the cytosol is almost undetectable. For example, at an agonist concentration of 0.01 μM ([F]0 = 30 ??, μSR = 50) the cytosolic Ca2+ concentration changes by only 0.1 %. At higher agonist concentrations (up to 1 μM), the amplitude of calcium transient in the cytosol increases markedly, and SR in this case accumulates part of Ca2+ entering the cytosol (see Fig. 1, curve 7). At even higher concentrations of the agonist Ca2+ begins to leave the SR, initially in an amount less than was previously pumped into it (in the range of agonist concentrations 1-20 μM, see Fig. 1, curve 8), and then the amount of Ca2+ leaving the SR begins to exceed the amount of Ca2+ previously pumped (in the range of agonist concentrations from 20 μM to 1 mM, see Fig. 1, curve 9). Note that the maximum degree of sarcoplasmic reticulum emptying at an agonist concentration of 1 mM is 83 %. As the agonist concentration increases further, the behavior of the SR becomes even more complex. During the period of increasing cytosolic Ca2+ concentration, the SR first pumps Ca2+ from the cytosol, then calcium-induced calcium release occurs, after which the slow pumping of cytosolic Ca2+ into the SR begins again. After the Ca2+ concentration in the cytosol begins to decrease, its content in the SR also begins to decrease slowly at first, and then a rapid refilling of the SR with Ca2+ occurs, so rapidly that the Ca2+ content in the SR exceeds the basal level. The Ca2+ content in the SR then begins to decrease until it reaches the basal level (at the same time the cytosolic Ca2+ concentration also reaches the basal level). On the contrary, at high values of the conductance gain coefficient of calcium channel of SR (μSR = 2000), only the oscillatory mode is realized. This was tested in the range of agonist concentrations from 0.01 nM to 100 mM.
To model in vitro studies, the effect of the agonist-degrading enzyme can be ignored. Under such conditions it is possible to study not only the effect of the agonist on Ca2+ distribution in the cell system but also the effect of inhibition or activation of calcium pumps of the plasma membrane and SR [25]. In the absence of an agonist-degrading enzyme, the cell system will not return to the initial (basal) state but will switch to a new steady state different from the basal one. Note that in many aspects the action of the agonist is very similar to the action of inhibitors of calcium pumps of PM. As the agonist concentration or the degree of inhibition of the plasma membrane calcium pumps increases, the following shapes of the time dependence of the Ca2+ concentration in the cytosol can be observed:
- the level of Ca2+ concentration in the cytosol remains virtually unchanged (at very low agonist concentrations).
- the Ca2+ concentration in the cytosol slowly and monotonically increases until it reaches a new steady-state level (the SR accumulates some Ca2+ entering the cytosol, and no calcium-induced calcium release occurs).
- a maximum of cytosolic Ca2+ with small amplitude appears, after which its concentration decreases to a new stationary level. There is no massive Ca2+ release from the SR. In some cases (at relatively low agonist concentrations or low μSR) some Ca2+ entering the cytosol may be accumulated by the SR and in other cases (at relatively high agonist concentrations or high μSR) a weak Ca2+ flux into the cytosol from the SR may be observed.
- there is a massive release of Ca2+ from the SR (CICR). The amplitude of the calcium transient increases significantly. The new steady-state level of Ca2+ concentration in the cytosol is determined by both the agonist concentration and the degree of inhibition of the calcium pump of PM: the greater these parameters, the higher the new steady state level.
- damped oscillations of Ca2+ concentration in the cytosol appear. The large amplitude of the first maximum is a consequence of calcium-induced calcium release from the SR. The amplitude of the second (and subsequent) maxima is small at first but increases as the concentration of the agonist or the degree of inhibition of the calcium pump of PM increases. Note also that damped oscillations may also appear with relatively small Ca2+ influx into the cytosol from the SR, but in this case the oscillations may remain almost undetectable (see point 3).
- a mode of periodic oscillations of Ca2+ concentration in the cytosol is established. With the increase of agonist concentration, the amplitude of the second and subsequent maxima first increases and then begins to decrease.
- a decrease in the amplitude of the second and subsequent maxima is the reason why periodic oscillations turn into damped ones.
- the damped oscillations are terminated. The cytosolic calcium signal again takes the form of a transient, and the new stationary level of cytosolic Ca2+ concentration appears to be significantly higher than the basal level (by orders of magnitude).
- the Ca2+ concentration in the cytosol after a sharp increase as a result of calcium-induced calcium release from the SR remains almost at the same level, neither significantly decreasing nor increasing. The cytosolic calcium signal loses its transient form. At this time, the step of Ca2+ pumping into the SR from the cytosol is absent, although a huge amount of Ca2+ enters the cytosol from the extracellular space.
- the Ca2+ concentration in the cytosol after a sharp increase as a result of calcium-induced calcium release from the SR slowly and monotonically increases until it reaches a new stationary level. In this region, the maximum possible rate of the calcium pump of PM is less than the rate of Ca2+ entry into the cytosol from the extracellular space, so its concentration in the cytosol increases until the rate of Ca2+ entry into the cytosol from the extracellular space becomes equal to the maximum rate of the calcium pump of PM (the decrease in the rate of Ca2+ entry into the cytosol is achieved by significantly increasing its concentration in the cytosol, which reduces the Ca2+ concentration gradient between the cytosol and the extracellular space).
Note that not all of the above shapes of the cytosolic Ca2+ concentration time dependences can be observed in each specific case. For example, as was shown above, damped and periodic oscillations are not observed at small values of μSR, and only periodic oscillations are observed at its large values in the range of agonist concentrations from 0.01 nM to 100 mM. A similar situation, when in some types of smooth muscle cells the agonist induces cytosolic Ca2+ oscillations, while in other types only transient Ca2+ signal is observed, is described, for example, in [42].
More about SR and SOC properties
The results of the study of our model show that the SR is never completely emptied (this is also noted in [33-35, 44]), although it seems that the massive Ca2+ release from the SR should continue until the SR is completely emptied [35, 45, 58]. In the oscillatory mode, the maximum degree of SR emptying is 64.5 % (Cret = 0.355 at time at tmax,2 = 10.447 s). This is quite close to the values reported in the literature, in particular, in the article [34] for pancreatic smooth muscle cells it is indicated that SR is emptied by 40 % during one spike. Sometimes the Ca2+ release from SR is not accompanied by the opening of SOCs [34]. It can be seen in Fig. 1 that in the case when the conductance gain coefficient of calcium channels of SR is relatively low, there is no SOC-like effect. After Ca2+ release from the SR has occurred, Ca2+ is pumped out of the cytosol into the SR and into the extracellular space, that is, at the time when the SR is filling, the Ca2+ flow through the PM JPM is mainly directed from the cytosol into the extracellular space rather than into the cytosol. Therefore, we cannot say that Ca2+ transferring the SR arriving from the extracellular space (via SOCs). One of the features of the SOCs is that if the stimulating action of a signaling substance is terminated, these channels remain open until the Ca2+ stores in SR are completely refilled [34]. A similar effect is indeed observed in the study of our model: as can be seen from Fig. 3, at the time when the seventh maximum of Ca2+ concentration in the cytosol is observed, the signal substance concentration (curve 4) is only 0.003 % of the initial one. We can assume that the action of the signaling substance is practically absent, however, even after this moment the processes of SR refilling and simultaneous Ca2+ entry into the cytosol from the extracellular space continue.
Whether SOCs are needed for SR refilling: modeling an experimental protocol
Above, we have drawn an analogy between the SR refilling with simultaneous entry of Ca2+ into the cytosol from the extracellular space, which we observed within the developed model in the oscillatory mode, with the SOCE process observed in experimental studies. However, these studies are performed under specific conditions. To identify the calcium channels of PM that open in response to SR emptying and allow SR refilling, an experimental protocol is used where thapsigargin (TG), an inhibitor of calcium pump of SR, is applied in the presence of a calcium-free extracellular solution, which causes SR emptying. Then returns the Ca2+ concentration in the extracellular solution to the basal level and observes an increase in Ca2+ concentration in the cytosol, which is interpreted as a sign of SOCs opening and Ca2+ entry through them into the cytosol from the extracellular solution. Within the developed model, we carried out studies simulating the protocol described above (Fig. 9). The results obtained mostly coincide with the experimental data. The effect of thapsigargin was modeled by changing the limiting rate of the calcium pump of SR VmSR to zero, which corresponds to complete inhibition of this pump. Replacement of the extracellular solution, which contained Ca2+ at the basal level, with a calcium-free solution was modeled by a change of Ca2+ concentration in the extracellular space from 1.10-3 M to 1.10-8 M, which corresponds to the Ca2+ concentration in the presence of EGTA.
As a result, the Ca2+ concentration in the cytosol and SR decreases, reaching a new steady state level over time (5.57.10-11 M in the cytosol, 3.33.10-6 M in the SR, and in the extracellular solution the Ca2+ concentration increases up to 1.11.10-6 M). The reduction of VmSR to zero after that (i.e., complete inhibition of the calcium pump of SR) induces a sharp increase of the cytosolic Ca2+ concentration with a further smooth decrease to almost the previous level (5.59.10-11 M). Inhibition of the calcium pump of SR also leads to a decrease of the Ca2+ concentration in the SR: it becomes equal to the Ca2+ concentration in the cytosol. As a result, the possibility of Ca2+ release from the SR no longer exists, since there is no difference in Ca2+ concentrations in the SR and in the cytosol. Therefore, when Ca2+ is returned to the extracellular solution (up to the basal level), the Ca2+ concentration slowly increases simultaneously in SR and cytosol up to the cytosolic basal level, i.e., up to 1.10-7 M. This increase implies Ca2+ entry into cytosol (and into SR) from the extracellular solution through PM and is interpreted by researchers as a proof of the presence of SOCs on the PM. However, as the simulation shows, such an increase in cytosolic Ca2+ concentration may occur due to the presence of slow basal flow through the PM. Therefore, this possibility should also be taken into account when interpreting the experimental results. This result shows that the developed model reproduces the phenomena that are usually interpreted as a manifestation of SOCE associated with the existence of SOCs on the PM. Therefore, we can conclude that the nature of the SOCE phenomenon may be related to the property of the PM to pass Ca2+ into the cytosol from the extracellular space due to the SBF-PM. Via such a process, SR refilling can also occur without the participation of a special class of calcium channels – store-operated calcium channels.
Figure 9: Simulation of Ca2+ concentration change in cytosol Ccyt = [Ca2+]c / [Ca2+]c,b over time t with complete inhibition of calcium pump of SR by thapsigargin TG (VmSR = 0 at 42 s) in calcium-free medium ([Ca2+]o = 10 nM from 6 to 60 s). Addition of Ca2+ to the external medium (at a basal concentration of 1 mM) leads to a restoration of the basal Ca2+ concentration in the cytosol. Simulations were performed at μSR = 2000, [A]0 = 0 and [F]0 = 0. The values of other parameters are given in Table 1
Conclusions
The simplest model of calcium-induced calcium release from the SR has been developed that takes into account the minimum possible number of components required for smooth muscle cell functioning:
- two membranes (plasma membrane and sarcoplasmic reticulum membrane) with Ca2+ channels whose rate is proportional to the Ca2+ concentration gradient at both sides of the membrane, and calcium pumps that remove Ca2+ from the cytosol at a rate that depends on the cytosolic Ca2+ concentration;
- calcium channel receptors, to which signal-transmitting substances (agonist for PM and Ca2+ for SR) can bind, as a result the channels opens, increasing their throughput capacity;
- sites of Ca2+ binding with calcium channels on the cytosolic side of the PM responsible for inactivation of open calcium channels by cytosolic Ca2+;
- slow basal flux of Ca2+ into the cell from the extracellular space through the PM, by which the cell system is “adjusted” so that passive and active transport through PM and SR membrane are balanced, allowing to maintain basal concentrations in cytosol, SR and extracellular space (100 nM, 1 mM and 1 mM, respectively): this flux is crucial for the model.
The developed model makes it possible to study the effect of agonist and modulation of the activity of calcium pumps of the PM and the SR on changes in the Ca2+ concentration in the cytosol, SR and extracellular space under both in vivo and in vitro conditions. A study of this model, which simulates the behavior of a smooth muscle cell when it is stimulated by an agonist, leads to the following conclusions:
- • the results of the simulation well agree with experimental observations;
- • after the termination of stimulation, the cell system returns to the initial state in the in vivo mode, and under in vitro conditions it reaches a new stationary level;
- • despite the high values of rate constants of binding of signal substance with receptors of the calcium channel of PM and cytosolic Ca2+ with receptors of the calcium channel of SR, the number of opened channels on the PM and membrane of SR remains rather insignificant;
- • SR can act both as a passive participant in the process of Ca2+ accumulation in the smooth muscle cell, acting as a buffer, and play a major role in this process, significantly increasing the Ca2+ concentration in the cytosol due to calcium-induced calcium release, which is initiated by Ca2+ entry from the extracellular space through the PM;
- • under certain conditions, depending on the values of the model parameters, both single cytosolic Ca2+ transient mode and a periodic oscillation mode can be observed. The periodic oscillation mode, as well as the single cytosolic Ca2+ transient mode, is characterized by changes in Ca2+ concentrations not only in the cytosol but also in the extracellular space and SR. The possibility of Ca2+ redistribution between the three compartments (extracellular space, cytosol, and SR) creates the possibility of cytosolic Ca2+ concentration oscillations;
- • for the process of calcium-induced calcium release, there is no particular need to involve the idea that cytosolic Ca2+ must close the calcium channels of the PM to terminate Ca2+ flow from the extracellular space into cytosol;
- • the termination of calcium-induced calcium release occurs spontaneously due to the fact that Ca2+ fluxes into the cytosol and out of the cytosol become equal: the active Ca2+ flux from the cytosol increases (due to an increase in the rate of calcium pumps of the PM and SR caused by an increase in the Ca2+ concentration in the cytosol), while the passive Ca2+ flux into the cytosol first increases (due to the increased number of open calcium channels on the SR membrane) and then begins to decrease (due to a decrease in the Ca2+ concentration gradient both between the cytosol and the extracellular space and between the cytosol and the SR); as a result, at a certain time point these fluxes become equal and the process of Ca2+ accumulation in the cytosol is terminated. Thus, calcium-induced calcium release is terminated for purely kinetic reasons and not because of the closure by cytosolic Ca2+ of calcium channels on the PM opened by the agonist. As a result of calcium-induced calcium release, the sarcoplasmic reticulum is not completely emptied, but rather significant amounts of Ca2+ remain in it;
- • the model qualitatively reproduces the results of experimental studies performed to identify SOCs using inhibitors of calcium pump of SR in calcium-free medium;
- • the process, which is interpreted as refilling of SR with Ca2+ from extracellular space through SOCs, may be of a purely kinetic nature: the Ca2+ flux from extracellular space into SR through cytosol is caused by the fact that at this time there is Ca2+ excess in extracellular space and Ca2+ deficiency in cytosol and SR (in comparison with basal level). This determines the appearance of the driving force for Ca2+ transfer from extracellular space to cytosol and from cytosol to SR;
- • the process of SR refilling can proceed at the expense of SBF-PM that becomes noticeable when the Ca2+ concentration in the extracellular space exceeds the basal level, and the Ca2+ concentration in the SR and cytosol is below the basal level. This process is similar to SOCE, but does not need a separate type of calcium channels (SOCs). Ca2+ from the extracellular space is transported through the cytosol into SR, and this process takes place (due to the specific kinetics of the process) at the cytosolic Ca2+ concentration close to the basal level. Note that the emptying of SR after inhibition of the calcium pump of SR also occurs at the expense of slow basal calcium flow from the SR into the cytosol (SBF-SR). This does not require the opening of calcium channels on the SR membrane, but only needs to stop pumping out Ca2+ from the SR into the cytosol.
We understand that the simple model developed by us cannot fully coincide with the experiment. However, our study allows us to have a fresh view on the process of calcium-induced calcium release from SR and demonstrate that another interpretation of the experimental results is also possible. The ideas about the mechanism of calcium-induced calcium release from SR as well as the mechanism of SR refilling presented in this article should also be considered to be potentially possible, along with other concepts about the mechanisms providing calcium homeostasis in muscle cells.
Declarations
Funding
No funds, grants, or other support was received.
Conflicts of interests
The authors have no competing interests to declare that are relevant to the content of this article.
Authors’ contributions
Karakhim S.O. – article concept, verification, analysis and investigation of the kinetic model, analysis and interpretation of data obtained, discussion of the results, writing the paper.
Zhuk P.F. – creation and mathematical analysis of the kinetic model, derivation of equations, analysis and discussion of the results, writing the paper.
Kosterin S.O. – idea for the article, discussion of the results, critically revision of the manuscript.
All authors read and approved the final manuscript.
The authors declare that all data were generated in-house and that no paper mill was used.
References
- Albert AP, Saleh SN, Peppiatt-Wildman CM, et al. Multiple activation mechanisms of store-operated TRPC channels in smooth muscle cells. J Physiol 583 (2007): 25–36.
- Appleby PA, Shabir S, Southgate J, Walker D. Cell-type-specific modeling of intracellular calcium signalling: a urothelial cell model. J R Soc Interface 10(86) (2013): 20130487.
- Avila-Medina J, Mayoral-Gonzalez I, Dominguez-Rodriguez A, Gallardo-Castillo I, et al. The complex role of store operated calcium entry pathways and related proteins in the function of cardiac, skeletal and vascular smooth muscle cells. Front Physiol 9 (2018): 257.
- Barritt GJ. Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337 (1999): 153–169.
- Berridge MJ. Capacitative calcium entry. Biochem J 312 (1995): 1–11.
- Bird GS, DeHaven WI, Smyth JT, Putney JW. Methods for studying store-operated calcium entry. Methods 46 (2008): 204–212.
- Bondarenko VE, Szigeti GP, Bett GCL, Kim S-J, et al. Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287 (2004): H1378–H1403.
- Borle AB, Borle CJ, Dobransky P, Gorecka-Tisera AM, et al. Effects of low extracellular Ca2+ on cytosolic free Ca2+, Na+, and pH of MDCK cells. Am J Physiol 259 (1990): C19–C25.
- Burdyga T, Wray S, Noble K. In situ calcium signalling: no calcium sparks detected in rat myometrium. Ann NY Acad Sci 1101 (2007): 85–96.
- Bursztyn L, Eytan O, Jaffa AJ, Elad D. Modeling myometrial smooth muscle contraction. Ann NY Acad Sci 1101 (2007): 110–138.
- Chalmers S, Olson ML, MacMillan D, Rainbow RD, et al. Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium 42 (2007): 447–466.
- Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134) (1993): 740–744.
- Clapham DE. Calcium Signaling. Cell 80 (1995): 259–268.
- Collier ML, Ji G, Wang Y-X, Kotlikoff MI. Calcium-induced calcium release in smooth muscle: loose coupling between the action potential and calcium release. J Gen Physiol 115 (2000): 653–662.
- Esfandiarei M, Fameli N, Choi YYH, Tehrani AY, et al. Waves of calcium depletion in the sarcoplasmic reticulum of vascular smooth muscle cells: an inside view of spatiotemporal Ca2+ PLoS One 8 (2013): e55333.
- Fan G, Cui Y, Gollasch M, Kassmann M. Elementary calcium signaling in arterial smooth muscle. Channels 13 (2009): 505–519.
- Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev 82 (2002): 893–922.
- Floyd R, Wray S. Calcium transporters and signalling in smooth muscles. Cell Calcium 42 (2007): 467–476.
- Gomperts BD, Tatham PER, Kramer IM. Signal Transduction. Academic Press, 2002, San Diego, San Francisco, New York, Boston, London, Sydney, Tokio
- Hajnoczky G, Thomas AP. Minimal requirements for calcium oscillations driven by the IP3 receptor. EMBO J 16 (1997): 3533–3543.
- Harhun M, Gordienko D, Kryshtal D, et al. Role of intracellular stores in the regulation of rhythmical [Ca2+]i changes in interstitial cells of Cajal from rabbit portal vein. Cell Calcium 40 (2006): 287–298.
- Horowitz A, Menice CB, Laporte R, et al. Mechanism of smooth muscle contraction. Physiol Rev 76 (1996): 967–1003.
- Janssen LJ, Kwan CY. ROCs and SOCs: what’s in a name? Cell Calcium 41 (2007): 245–247.
- Laver DR. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ Clin Exp Pharmacol Physiol 34 (2007): 889–896.
- Karakhim SA, Gorchev VF, Zhuk PF, Kosterin SA. Mathematical modeling of calcium homeostasis in smooth muscle cells while activity of plasma membrane calcium pump is modulated. Ukr Biochem J 85 (2013): 177–190 (in Russian).
- Karakhim SO, Zhuk PF, Kosterin SO. Kinetics simulation of transmembrane transport of ions and molecules through a semipermeable membrane. J Bioenerg Biomembr 52 (2020): 47–60.
- Karakhim SO, Shlykov SG, Babich LG, Sinko DV. Analysis of decay kinetics of the cytosolic calcium transient induced by oxitocin in rat myometrium smooth muscle cells. J Muscle Res Cell Motil 42 (2021): 117–127.
- Keizer J, Levine L. Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca2+ Biophys J 71 (1996): 3477–3487.
- Kosterin SA. Calcium transport in smooth muscles. Naukova Dumka, 1990, Kiev (in Russian)
- Kosterin SO, Miroshnychenko MS, Pryluts’kyi YuI, et al. Mathematical model of trans-sarcomere exchange of calcium ions and Ca2+-dependent control of smooth muscle contractile activity. Ukr Biochem J 74 (2002): 128–133 (in Ukrainian)
- Kotlikoff MI. Calcium-induced calcium release in smooth muscle: the case for loose coupling. Prog Biophys Mol Biol 83 (2003): 171–191.
- Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259 (1990): C3–Cl8.
- Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev 77 (1997): 901–930.
- Parekh AB, Putney JW. Store-Operated Calcium Channels. Physiol Rev 85 (2005): 757–810.
- Petersen OH, Burdakov D, et al. Polarity in intracellular calcium signaling. BioEssays 21 (1999): 851–860.
- Prakriya M, Lewis RS. Store-operated calcium channels. Physiol Rev 95 (2015): 1383–1436.
- Putney JW. Capacitative calcium entry: sensing the calcium stores. J Cell Biol 169 (2005): 381–382.
- Putney JW. Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 42 (2007): 103–110.
- Putney JW, Steinckwich-Besancon N, Numaga-Tomita T, Davis FM, et al. The function of store-operated calcium channels. Biochim Biophys Acta 1864 (2017): 900–906.
- Robert V, De Giorgi F, Massimino ML, et al. Direct monitoring of the calcium concentration in the sarcoplasmic and endoplasmic reticulum of skeletal muscle myotubes. J Biol Chem 273(46) (1998): 30372–30378.
- Rubtsov AM. Role of sarcoplasmic reticulum in the regulation of muscle contractile activity. Soros Educational Journal 6(9) (2000): 17–24 (in Russian).
- Savineau J-P, Marthan R. Cytosolic calcium oscillation in smooth muscle cells. Physiology 15 (2000): 50–55.
- Schulte A, Blum R. Shaped by leaky ER: homeostatic Ca2+ Front Physiol 13 (2022): 972104.
- Shannon TR, Wang F, Puglisi J, Weber C, et al. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys J 87 (2004): 3351–3371.
- Sobie EA, Dilly KW, Cruz JS, et al. Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J 83 (2002): 59–78.
- Stein P, Savy V, Williams AM, Williams CJ. Modulators of calcium signalling at fertilization. Open Biol 10 (2020): 200118.
- Sun M, Li Y, Yao W. A dynamic model of cytosolic calcium concentration oscillations in mast cells. Mathematics 9(18) (2021): 2322.
- Sutko JL, Airey JA. Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function? Physiol Rev 76 (1996): 1027–1071.
- Venetucci LA, Trafford AW, O’Neill SC, Eisner DA. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res 77 (2008): 285–292.
- Vig M, Kinet J-P. The long and arduous road to CRAC. Cell Calcium 42 (2007): 157–162.
- Wiesner TF, Berk BC, Nerem RM. A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. Am J Physiol 270 (1996): C1556–Cl569.
- Winslow RL, Rice J, Jafri S, Marban E, O’Rourke B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84 (1999): 571–586.
- Wong AYK, Fabiato A, Bassingthwaigthe JB. Model of calcium-induced calcium release mechanism in cardiac cells. Bull Math Biol 54 (1992): 95–116.
- Wray S, Burdyga T, Noble K. Calcium signalling in smooth muscle. Cell Calcium 38 (2005): 397–407.
- Yao J, Li Q, Chen J, Muallem S. Subpopulation of store-operated Ca2+ channels regulate Ca2+-induced Ca2+ release in non-excitable cells. J Biol Chem 279(20) (2004): 21511–21519.
- Zhuk PF, Karakhim SA, Gorchev VF, Kosterin SA. Mathematical modeling of transmembrane calcium transport kinetics in smooth muscle cells. Ukr Biochem J 80 (2008): 123–134 (in Russian).
- Zinchenko VP, Dolgacheva LP. Intracellular signaling. Electronic Publishing House “Analytical Microscopy”, 2003, Pushchino (in Russian).
- Zucchi R, Ronca F, Ronca-Testoni S. Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther 89 (2001): 47– 65.