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Abstract 

We used discrete random walks for the analysis of two chronic conditions that may be present simultaneously in a 

patient. We analyzed the comorbidity between two symptoms referring to the pathological repetition of speech: 

palilalia and echolalia. We used memory walks with coupled memory with probability f. The probability f quantifies 

the mutual interaction between pairs of random walkers. We perform measures that quantify two characteristics of 

the walks; one of the local nature, the fractal dimension (D) and another of a global nature, the exponent of Hust 

(H). We found that typical measures of D are related to less severe degrees of palilalia and echolalia, followed by 

variations smaller than H. The H measures show that the regime is superdiffusive and there is no transition between 

diffusion regimes. In the region of comorbidity, the diffusive regimes do not exhibit quantitative values of H of 

ERW. We find curves for which the symptoms of palilalia and echolalia do not vary. That is, certain changes in the 

environment, quantified by the feedback parameter (p) and the probability of interaction (f); do not cause variations 

in the degree of severity of the two types of pathological speech repetition that were studied. 
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1. Introduction 

Developmental disorders are classified as specific and invasive. Specific disorder is characterized by developmental 

delays in a specific area or specific areas, whereas invasive disorder has deficiencies in basic functions in multiple 

contexts that includes socialization and communication. Invasive developmental disorders (TID) are part of the 

autism spectrum disorder group. Autism spectrum disorder affects more than 1% of children in the United States [1]. 

It is classifed as a non-degenerative neurodevelopmental disorder, accompanied by symptoms such as delay in 

verbal and non-verbal communication; resistance to routine change; restricted and persistence interests in relation to 
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an activity, topic, object, speech, idiosyncratic phrases, etc., abnormalities in eye contact and body expression; 

difficulties in initiating and maintaining social relations. Symptoms may vary from mild to moderate or severe [2]. 

The possibility of developing similar physical models to assist in the understanding of mental disorders, which may 

enable the development of new diagnostic tools. Based on the symptoms and diagnostic criteria, we present a model 

that uses discrete random walks as a possible diagnostic tool for two types of pathological speech repetition: 

echolalia and palilalia. The Diagnostic and Statistical Manual of Mental Disorders (DSM5) describes a significant 

spectrum of mental disorders: neurodevelopmental disorders and neurocognitive disorders. Some of these disorders 

may have one or more symptoms in common. Neurodevelopmental disorders, for example, such as Tourette’s 

syndrome, Asperger’s syndrome, autistic spectrum disorders (ASD), persistent vocal tic disorder, transient vocal tic 

disorder, psychotic disorder due to another medical condition, catatonia associated with another mental disorder, etc. 

These disorders can be accompanied by pathological, parody and seemingly meaningless (echoing) repetition of a 

word or phrase. This pathology can be divided into two subtypes: echolalia and palilalia. Echolalia is defined as the 

pathological, parody and apparently meaningless (echoing) repetition of a word or phrase that has just been spoken 

by another person. Palilalia is the repetition or imitation of an echo made by a person in relation to words just 

uttered by that same person (self echolalia). Numerous studies are aimed at examining the causes, correlations 

between neurodevelopmental disorders and the pathological repetition of discourse, providing manuals of treatments 

and specialized training for health professionals and society in general [3-9]. 

 

In the Diagnostic and Statistical Manual of Mental Disorders (DSM5), which describes neatly a broad spectrum of 

neurodevelopmental disorders and neurocognitive disorders, symptomatic aspects, diagnostic criteria, risk factors, 

prognosis, differential diagnosis, etc [2]. Based on these symptoms, we propose a physical model to quantify the 

pathological repetition of words or phrases. We present the pathological repetition of speech in the perspective of 

stochastic processes. The choice of discrete random walks allows us to make an analogy between these symptoms 

and the diffusive process. In this analogy the constructed model allows to associate the echolalia and the palilalia 

with measures typical of physical observables of the random walks. To make the analysis of autistic behavior, by 

analogy with the diffusive system formed by random walkers, we need to define a system that serves as the standard 

for terms of comparison. To this end, we have defined the ERW model as the standard. The reasons for our school 

are: (a) it has well-known diffusive regimes, (b) the propagator is known, (c) has a well-known analytical solution, 

and (d) is a widely used model for building other models of non-Markovian random walks [10-18]. 

 

The relevant aspects of the Schutz and Trimper model, their main characteristics and diffusion regimes are described 

below. This model describes discrete random walks with uniform memory profile, which considers a discrete 

random walk of history relevant to the next walker’s decisions. At every instant of time t the information is 

recovered in an equiprobable way. Therefore, the probability that an action taken in the past is 1/t, to t being the 

current time. The random walk is recorded at all times, this aspect attributes to the process a non-Markovian 



 
 
 

 

J Psychiatry Psychiatric Disord 2019; 3 (2): 067-079  69  

 

 

characteristic. The stochastic dynamics of the process occur in the following way: the walker starts in time t0 in a 

position x0, at each moment of time the walker walks one step to the right or step to the left, with probability p e (1 ˗ 

p), respectively. For this process, the stochastic evolution equation is given by the equation: 

 

 

 

for the time t+1. The variable σt+1 assumes the value +1 when the walker walks one step to the right and -1 when the 

walker walks one step to the left. The memory consists of a set of random variables σt' for the time t' < t that the 

hiker can recover. This process occurs as follows: 

 

(a) at time t+1 a number t' of the set 1, 2, …, t is chosen randomly with uniform probability 1/t. 

(b) σt+1 is determined stochastically by obeying the following relations, σt+1 = σt' with probability p e σt+1 = -σt' 

with probability 1- p. 

 

The first step at time t=1, occurs according to the following dynamics: the walker is in position X0 and moves to the 

right with probability q or to the left with probability 1-q, that is, σ1=+1 with probability q and σ1=-1 with 

probability 1-q. The stochastic evolution equation is: 

 

 

 

The parameter p is the probability of the walker repeating an action from the past in a time t'. When (p>1/2) the 

walker presents a persistent behavior, this is characterized by the repetition of past actions. For (p<1/2) the walker 

takes an action contrary to the action that was selected, presenting an anti-persistent behavior. For the value of 

(p=1/2) the random walk is Markovian. In the boundary regions of (p=0) and (p=1) two extreme behaviors arise. 

The maximum persistent behavior occurs in (p=0) the maximum of the persistent behavior, while in (p=1) the 

maximum persistent behavior occurs, in the latter case the movement is ballistic, characterized by the typical value 

of the Hurst exponent (H=1). The first moment of the position is 

 

 

 

With β=2q˗1, α=2p˗1 and Γ is the gamma function. The α and β parameters are defined in the range [˗1, 1]. Using 

the α parameter we can characterize the random walk as persistent for α > 0 and anti-persistent for α < 0. 
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The second moment of the position is given by 

 

 

 

The diffusive behavior changes with the probability values p, when (p <3/4) the second moment depends linearly on 

t and the diffusion is regular (H=1/2), to (p >3/4) diffusion is characterized as superdiffusive, for the intermediate 

case (p=3/4) the second moment is described by a logarithmic function cite ERW. Additional information about the 

ERW model, such as probability distribution, the study of its limits, etc. can be verified in cite ERW, BB, GH2. 

 

2. The Model 

Our model consists of a pair of random walkers with memory coupled with probability f. The first random walker is 

the ERW model, which is defined as healthy behavior. The second, which presents the behavior invariant to 

changes, represents the autistic. The decisions of each walker are influenced by the decisions of the other (or by his 

own history) with probability f (1˗f). When walkers are not influenced by the microscopic decisions of the other, 

with probability (1-f), this phenomenon is associated with the palilalia symptom. As the probability (f) increases, 

each set of random walkers becomes influenced by the story of the other. We associate this behavior with the 

echolalia symptom. The higher the probabilities of interaction (not interaction) the greater the typical values of f (1-

f) the higher the degrees of echolalia (palilalia). The first walker we call “Professor” and the second of “Student”. 

When the Professor and student do not learn from each other, each student makes decisions based only on his / her 

own history, representing the maximum of palilalia (associated with the most severe degree of palilalia). As f grows 

interest by the parody repetition of the speech of the other is less restricted, there is mutual repetition of speech. The 

maximum (minimum) of mutual influence occurs when f=1 (f=0). At the outset of microscopic dynamics, Student 

imitates (“learns”) the Professor’s decisions with probability f. In like manner the Professor learns (does not learn) 

with the Student, that is, the decisions of the Student are known by the Professor with probability f. 

 

For this problem, however, we note that the interaction is bilateral. We will show the construction of our model, 

which led us to the reasoning above. Through the use of random walks with coupled memory; the Professor can 

learn (not learn) from Student’s actions with probability fP (1-P), likewise, Student can learn (not learn) with 

Professor probability fA (1-A). In this way, as the two random walkers may have an impact on the microscopic 

dynamics of each other. 
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Only for reasons of order, let us call the ERW model of Professor and the other of Student. Our model describes the 

interaction between the two discrete random walkers (Professor and Student). We define the Professor as the ERW 

model, whose microscopic dynamics has already been described previously. The Student begins his movement in 

the position Y0, in time t0=0, at each instant of time the random walker walks one step to the right, remaining 

persistently in the same decision to every instant of time. The quantification of this behavior is performed by the 

stochastic equation: 

 

 

 

where 𝑣t+1 is a random variable, assuming the values of σt' when the random walker behaves like the ERW model. 

The Student accepts the decisions of the ERW model with probability fA and rejects with probability (1-fA), when the 

walker makes decisions based on his own history. The memory is formed by a set of random variables 𝑣t' t' < t, 

which the walker remembers as follows: 

 

(a) in time t + 1 a number t' of the set 1, 2, …, t is chosen in an equipotable manner 1/t. 

(b) the variable 𝑣t+1 is determined stochastically as 𝑣t+1= 𝑣t'. 

 

The first step at time t=1, the walker is in the position Y0, accepting (rejecting) the ERW model with probability fA 

(1-fA), with the equation of stochastic evolution quantifying this process for all time: 

 

 

 

Since the student accepts (rejects) Professor’s decisions with probability fA (1-fA), we note that the random variable 

𝑣t' can be rewritten as: 

 

  

which allows us to rewrite the student’s stochastic equation as: 
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At the maximum of non-learning, fA=0, Student recalls actions only from his history, his stochastic equation is given 

by (6), another end, fA=1, when there is maximum interaction, the stochastic equation is written as: 

 

 

 

therefore, less than the first step, Y0, the process is described by the ERW model. Similarly, for the Professor, to 

encompass the ability to learn, we make the Professor susceptible to the actions of the Student. The Professor’s 

dynamics, too, will be influenced by Student’s decisions with probability fP and not influenced with probability 1- fP. 

The stochastic equation (2) is modified by the following transformation: 

 

 

 

resulting in the stochastic equation, which describes the learning of the ERW model with respect to the Student. 

 

 

 

At the point, fP=0, which quantifies the minimum of interaction, the random walker behaves like the ERW model, 

while fP=1 quantifies the Professor’s maximum learning probability relative to the actions of the Student. For the 

maximum interaction, fP=1, the stochastic equation takes the following form 

 

 

 

being 𝑣t' the stochastic variable that represents the student’s microscopic decisions. We can consider two cases for 

the probabilities of interaction between random walkers. The first case is the symmetric, when the probability of 

interaction of the two walkers is equal (fP=fA), and the second case is non-symmetric, when (fP ≠ fA). Let us address, 

in this work, the symmetric case (fP=fA). We set our model under these conditions. The maximum (minimum) 

coupling between Professor and Student will occur for the quantitative probability values equal to fP=fA=0 (fP=fA =1) 

which correspond to the minimum (maximum) of interaction, respectively. Therefore, we can vary a single 

probability value by calling fP=fA =f, we rewrite the equations (8) and (11) respectively as 
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In the case of minimal interaction, f=0, the models retrieve their ordinary results, without mutual interaction, with 

the stochastic equations (6) and (2) for Student and for the ERW model, respectively. To quantify the measures of 

the coupling result, we consider the resulting vector in two-dimensional space 

 

 

 

For our two-dimensional random walk case Xt and Yt are the stochastic variables of associated walkers, for example, 

axes x and y respectively. The random walkers interact according to the variations of the probability of interaction f, 

which quantifies the coupling between the random walkers. The equation (15) combines the characteristics of the 

two sets of walkers for the cases of palilalia (f=0) and echolalia (f=1). 

 

We measure two physical quantities of interest; the fractal dimension D, which measures is the measure of the local 

roughness; the Hurst H exponent, which measures long-range persistence. The Hurst exponent (H) classifies the 

different diffusion regimes in random walks [22]. The variance spreads non-linearly with time σ
2
 =< r

2
 > + < r >

2
α 

t
2H

. The local properties (D) and the global property H, are related according to the equation 

 

 

 

where 𝛿 the spatial dimension in Euclidean space [23]. 

 

3. Results 

Our model is formed by discrete random walks with coupled memory. The variance is characterized by the faster 

growth of the second moment when we compare to the first moment of the position, therefore, the variance can be 

approximated by the ratio < r
2
 >~ t

2H
. The means are estimated for our finite length walks consisting of 10

4
 hiking 

pairs of size 10
7
. We perform the estimates of two gratings which provide us with global and local property 

information of the system, quantified here by the measures of the Hurst exponent and fractal dimension, which are 

obtained through the relations < r
2
 >~ t

2H
 and D=3-H, respectively. 
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In the Figure 1, we display measures of the fractal dimension. The measures are presented as a function of the 

feedback parameter p and the coupling probability f. In the color panel, lighter shades are associated with smaller 

fractal dimension measurements, while larger values of D are related to darker color tones. The panel displays a 

spectrum of fractal dimension measurements in the range 1.9 ≤ D ≤ 2.4. We observe that objects in Euclidean space 

have entire dimensions, but dimensions related to fractal geometry objects can be fractioned. For example, for a 

fractal dimension value (D=1.9), the object has a dimension between the dimension of an object in one-dimensional 

Euclidean space (D=1) and a two-dimensional object (D=2). At the other end of the displayed values for the panel is 

the value (D=2.4), which is associated with an object with dimension between the dimension of a two-dimensional 

object (D=2) and a three-dimensional object (D=3). 

 

Looking at the results of the Figure 1, we can perform two types of analysis, one varying f by keeping p fixed and 

another by changing p and keeping f fixed. Keeping f fixed and varying p, we observe that D decreases as p → 1. 

Typical values of D in this case are: for f=0.7 fixed, p=0.1 we have D ≈ 2.3391 and p=0.9 we get D ≈ 2.0454. To 

perform the analysis according to the second perspective, we traced the graph by keeping p fixed and varying f. We 

get p=0; f=0 the value of D ≈ 2, f=0.6 the value of D ≈ 2.377 and p=1 with D measuring approximately 2. Note that 

the function is concave and presents, according to our numerical results, a maximum spectrum when the probability 

interaction assumes values of f >≈ 0.6 for all p. 

 

Figure 1: 3D diagram of the fractal dimension as a function of feedback parameter p and the probability of coupling 

f among random walkers. The color diagram was plotted to display a gradient between the purple and black colors. 

The display shows the intensity variation from purple to black. Typical measurements of the fractal dimension are 

displayed in the panel where the lowest intensity of purple is related to smaller measures of D, starting with the 

value D=1.9. Darker shades are associated with larger fractal dimension measurements, reaching their maximum 

value for D=2.4. 
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The results discussed above are reinforced when we look at the Figure 2. In it, measurements of the fractal 

dimension and Hurst’s exponent are displayed for values of p equal to 0.1, 0.3, 0.5, 0.7, 0.9 and 1 with the 

probability of coupling in the range 0 ≤ f ≤ 1. In the Figure 2 (a) the results of D show that D is a function concave 

with maximum in f >≈ 0.6, for any of the values of p. We note, maintaining fixed, that greater D variations are 

accompanied by lower values of p. The inverse of this behavior is shown in Figure 2 (b), where the function is 

convex. Maintaining f fixed lower variations of H are associated with higher values of p. Its minimum point occurs 

for f >≈ 0.6. Therefore, for larger values of p, smaller are the variations of the local physics observable D, which are 

accompanied by larger measurements of the global physics observable H. 

 

(a) Fractal dimension. 

 

(b) Hurst exponent. 

Figure 2: The behaviors of D and H are displayed as a function of the probability of interaction f e for ordinary 

values of p equal to 0.1, 0.3, 0.5, 0.7, 0.9 and 1. 

 

In the Figure 3 maps of D and H are displayed for the feedback and coupling parameters, respectively, in the ranges 

of 0 ≤ p ≤ 1 and 0 ≤ f ≤ 1. In Figure 3 (a) are highlighted curves with typical values of the fractal dimension equal to 

2.05, 2.1, 2.15, 2.2, 2.25, 2.3 and 2.35. From the local point of view, to go through each of these curves the fractal 

dimension remains the same. Therefore, to traverse the curve with D=2.2 varying p and f, the measure of the 

roughness remains invariant. From the global point of view, in the Figure 3 (b), the values of the Hurst exponent are 
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displayed. Curves for variations of H equal to 0.65, 0.7, 0.75, 0.8, 0.85 and 0.95 are highlighted. These curves show 

that for certain variations p and f, measurements of the observable physics H remain invariant. 

 

Figure 3: Color maps are displayed for D and H. Each map has two extreme colors: purple and black. The maps 

display a gradient between these two colors. Typical measurements of D and H are smaller (larger) for lighter shades 

(dark). In the Figure 3 (a) the map of the fractal dimension is displayed and in the Figure 3 (b) the map of the Hurst 

exponent. 

 

4. Discussion 

According to [17], measures of the Hurst exponent greater than 1/2, for which the regime is over diffusive, are 

associated with degrees of autism. The higher the values of H the more severe is the degree of autism associated, 

when analyzed from the perspective of restricted interests. The higher the values of H, the greater the degree of 

restricted interests related to random walkers associated with the diffusive regimes. 

 

Observing the Figure 1, the 3D diagram shows the most severe palilalia degree when f=0, random walkers exhibit 

typical values of D=2, which are associated with the ballistic diffusive regime characterized by quantitative values 
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of Hurst’s exponent H=1. As f increases the values of D increase to values of p, for example, equal to 0.1 as can be 

seen in Figure 2 (a). Traversing the f axis, the values of D get their highest value in f >≈ 0.6, which decreases to 

values equal to D=2 to f=1. Lower D values are associated with a more severe degree of palilalia for the point f <≈ 

0.6. At the most severe echolalia point f=1 we get the same value for the roughness measure D=2. In the point of 

palilalia (echolalia) f=0 (f=1) more severe the diffusive regime is ballistic H=1, accompanied by values typical of the 

fractal dimension equal to D=2. In the interval 0 < f < 1 between the extreme points, we have the simultaneous 

coexistence of palilalia and echolalia, causing this region implies in the region of comorbidity between these two 

symptoms. The point of least severity between these two symptoms occurs in f >≈ 0.6, where the fractal dimension 

has its highest value and the Hurst exponent shows its highest value, as can be seen in the Figure 2. Therefore, the 

point f <≈ 0.6 is the critical point of comorbidity between the symptoms of palilalia and echolalia. 

 

In the Figure 3 the maps referring to the fractal dimension and Hurst’s exponent measurements are displayed. In 

each one of them are highlighted curves whose measures do not vary according to certain changes of f and p. In the 

Figure 3 (a) the curves of equal measure of D are shown, i.e. curves of equal roughness with ordinary values equal 

to 2.05, 2.1, 2.15, 2.2, 2.25, 2.3 and, 2.35, which do not vary for certain combinations of f and p. Similarly, in the 

Figure 3 (b), we highlight curves that have values for fixed H, all of which quantify the over diffusive regime, their 

values are 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95, curves for which the changes of f and p do not imply changes of 

H, i.e. are curves of equal diffusivity. As the measured values for D and H are presented for the interval 0 < f < 1, we 

therefore have the region of the simultaneous existence of palilalia and echolalia, i.e. the region of comorbidity of 

these symptoms. In this perspective, we note that the equal dimension curves D and of equal diffusivity are curves of 

equal comorbidity, for them the degrees of palilalia and echolalia do not change according to the variations of the 

feedback parameter and the coupling probability f. 

 

5. Conclusions 

The Diagnostic and Statistical Manual of Mental Disorders (DSM5) describes that some neurodevelopmental 

disorders may have common symptoms, such as Tourette’s syndrome, autistic spectrum disorders (ASD), persistent 

vocal tic disorder, transient vocal tic disorder, psychotic disorder due to another medical condition, among other 

disorders. One such symptom is pathological, parody and seemingly meaningless (echoing) repetition of a word or 

phrase, such as echolalia and palilalia. We used a discrete random walk model, which consists of pairs of random 

walkers with memory coupling. Minimum (maximum) coupling is associated with palilalia (echolalia) where 

random walkers do not imitate (mimic) the microscopic behavior of each other with probability f (1-f). We 

performed measures of the fractal dimension and the Hurst exponent, which quantify local properties and global 

property, respectively. We need that the more severe degrees of palilalia (f=0) and echolalia (f=1) are associated 

with values smaller than D and related to larger measures of H, when compared with measures in the region 0 < f < 

1. For values of the coupling probability in the region 0 < f < 1, which is the region of comorbidity between palilalia 
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and echolalia, the curves of the measurements of D (H) are concave (convex), for the parameter of feedback p fixed, 

with critical value in f >≈ 0:6. We find curves of equal comorbidity, which are curves for which the symptoms of 

palilalia and echolalia do not vary, according to certain variations of the feedback parameter and the probability of 

interaction. We hope that these results may contribute to a better understanding of echolalia and palilalia and the 

simultaneous existence of symptoms in patients with invasive developmental disorders. 
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