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Abstract
Predicting the solubility of given molecules remains crucial in the 

pharmaceutical industry. In this study, we revisited this extensively studied 
topic, leveraging the capabilities of contemporary computing resources 
by employing two machine learning models: a linear regression model 
and a graph convolutional neural network (GCNN) model. Using various 
experimental datasets, both methods yielded reasonable predictions. 
Despite its highest level of performance, the GCNN model has limited 
interpretability. On the other hand, although more human inputs and 
evaluations on the overall dataset is required, the linear regression model 
allows scientists for a greater in-depth analysis of the underlying factors 
through feature importance analysis. From the chemistry perspective, using 
the linear regression model elucidates the impact of individual atom species 
and functional groups on overall solubility, highlighting the significance of 
comprehending how chemical structure influences chemical properties in 
the drug development process. It has been learned that introducing oxygen 
atoms can increase the solubility of organic molecules, while almost all 
other hetero atoms except oxygen and nitrogen tend to decrease solubility.
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Introduction
In the pharmaceutical industry, discovering new drugs is costly and time-

intensive. An early-stage high-throughput screening (HTS) is usually used to 
reduce expenses and expedite the process by eliminating molecules that lack 
desired properties [1]. One key property is solubility, which governs drug 
uptake, movement, and metabolism in human bodies [2].

Prediction of molecular solubility, whether based on theoretical principles 
or experimental data, has been a prominent research field for decades. In 
1968, Hansch et al. discovered that the octanol-water partition coefficient (P) 
can be used for solubility prediction [3]. Subsequently, the Yalkowsky group 
introduced a general solubility equation (GSE), which incorporated P and 
the melting point (MP) [4]. Later, Jorgensen and Duffy utilized Monte Carlo 
(MC) simulations to predict aqueous solubility by considering structural 
features such as molecular weight (MW), volume, solvent accessible surface 
area (SASA), hydrogen bond (HB) counts, and other physical descriptors like 
the solute–water Coulomb (ESXC) and Lennard–Jones (ESXL) interactions, 
as well as hydrophobic and hydrophilic components. Their approach achieved 
reasonable predictive accuracy on a dataset of 150 organic molecules [5].
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In recent years, with the fast growth of computing power 
and the development of new algorithms, researchers can now 
work with more extensive datasets and employ sophisticated 
machine learning (ML) models [6]. Several databases, such 
as AQUASOL and PHYSPROP, used by Huuskonen et al. 
[7], ESOL by Delaney [8], and various solubility handbooks 
[9], have provided access to experimental solubility data 
for thousands of chemicals. AqSolDB is a newly developed 
database that combines multiple existing datasets [10]. 
From a methodological perspective, rather than relying on 
traditional regression models and classic neural network 
(NN) models, the Barzilay group applied graph convolutional 
neural networks (GCNN) for molecular property prediction. 
These GCNNs transform molecular structures into graphs, 
which can be input into a directed message-passing neural 
network, achieving state-of-the-art performance [11]. 
Moreover, research has extended beyond drug solubility in 
aqueous solutions to include solute types like small proteins 
[12] or various organic solvents [13].

While these advanced ML algorithms deliver remarkable 
performance, they often present challenges for human 
scientists seeking mechanistic insights into the chemistry 
behind these solubility models. These models are commonly 
believed to be "black boxes" because it remains difficult to 
understand the inner workings of, for instance, a 20-layer deep 
learning NN or a GCNN when all molecules are represented 
by extensive matrices. From a chemist's perspective, there 
is a growing need to shift the focus away from performance 
metrics and toward gaining deeper chemical insights. In this 
study, our goal is not to solely push the boundaries of predictive 
accuracy but to harness the strengths of both classical and 

modern, sophisticated models to enhance our comprehension 
of the relationship between molecular structures and their 
chemical properties. With this knowledge, we aim to develop 
future ML models that combine high accuracy with human 
interpretability.

Methods     
Two ML models were applied in this study: A linear 

regression model and a GCNN model (Figure 1). 

In the linear regression model, we incorporated the 
molecular weight, total atom counts, and functional group 
counts as features to establish a multivariable regression 
with the experimental solubility values (logS). The features 
were directly obtained from the molecular structure using the 
RDKit module [14] in SMARTS notation [15]. We also used 
L1 regularization with an alpha value of 0.01.

As for the GCNN, we employed the Chemprop model [16], 
which converts the atoms and bonds in the molecules into 
one-hot encoding, subsequently concatenating them into one 
tensor representing each individual atom or bond. Chemprop 
could construct three distinct tensors: one that maps each 
atom to its corresponding bonds (a2b), another that maps 
each bond to its corresponding atom (b2a), and a third that 
maps each bond to its reverse bond (b2revb). Subsequently, it 
combines each atom tensor into a unified vector and each bond 
tensor into another consolidated vector. Employing these five 
tensors, Chemprop identifies the neighboring bonds for each 
bond and aggregates their vector representations. Finally, the 
model appends this sum to the vector representations of both 
the bonds and atoms. These summated vector representations 
of individual bonds are then combined to generate one feature 

Figure 1: Configuration of the linear regression model (above) and GCNN model (below), using the tyrosine molecule as an example. The 
linear regression model relies on human-engineered features, including molecular weight (MW) and the count of functional groups, to predict 
experimental solubility (logS), whereas the GCNN utilizes features acquired via message across a graph.
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Across all three datasets, both the linear regression 
model and the GCNN model produced reasonably accurate 
predictions, with the majority of predicted values falling 
within 1 log unit of the actual values, consistent with findings 
in similar studies [17, 18]. Notably, both models exhibited 
their best performance on the Huuskonen dataset and the least 
optimal performance on the AqSolDB dataset.

By analyzing the outliers in Figure 2C, those data points 
correspond to ionic compounds such as compounds containing 
Zr4+, Al3+, and Zn2+. This shows that the linear regression 
model has much poorer predictive power on those minorities 
that have quite different properties than the majorities. In this 
particular example, the majority of the dataset are neutral 
molecules. Imagine a human chemist will simply consider 
these ionic compounds to be very soluble while the regression 
model puts too much effort analyzing the organic part. The 
example suggests that the features for linear regression 
models need to be carefully determined and the composition 
of the datasets needs to be evaluated ahead. Here, a decision 
tree or a random forest model could be integrated to first filter 
out those ionic compounds that could greatly improve the 
performance of the linear regression model.

The GCNN model, on the whole, outperformed the linear 
regression model, particularly when dealing with larger and 

vector for the entire molecule, which enters a standard feed-
forward neural network with a single output (logS).

The results from both models were tested on three 
different datasets: the Delaney, Huuskonen, and AqSolDB. 
The overall accuracy was evaluated against 5-fold cross-
validation within each dataset, utilizing the root mean square 
error (RMSE) of the parity plots to assess the overall accuracy 
of the predictions.

Results
Predicting solubility

The parity plots for each model on different datasets are 
plotted in Figure 2, and the root-mean-square deviations 
(RMSE) are listed in Table 1. 

 

Figure 2: Parity plots for the Delaney, Huuskonen, and AqSolDB datasets using the linear regression model (above) and GCNN model 
(below). Predictions are shown from the validation folds of 5-fold cross-validation. Lines of best fit are shown in red.

Dataset Size RMSE, Linear 
Regression Model

RMSE, GCNN 
Model

Delaney 1127 1.13 0.59

Huuskonen 1282 1.08 0.49

AqSolDB 9982 1.83 0.76

Table 1: Performance of the Linear Regression Model and GCNN 
Model on Three Solubility Datasets
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diverse datasets, a result that aligns with the complexity and 
effectiveness of CNNs observed in various fields, including 
computer vision. However, this doesn't diminish the value 
of linear regression. Considering errors stemming from 
experimental conditions like pH and temperature, both models 
exhibit sufficient capabilities for drug design purposes.

Understanding the relationship between molecular 
structure and solubility

In contrast to the GCNN approach, which operates as a 
"black box", the linear regression model provides a relatively 
transparent depiction of the direct relationship between 
the input features and the solubility property of interest. 
Through feature importance analysis, we can visualize how 
each feature influences the final results. The significance of 
different atom species is presented in Figures 3.

Solubility hinges on the intermolecular forces between 
solute and solvent (water) molecules. In essence, polar 
molecules with more hydrogen bonds, whether as donors 
or acceptors, tend to exhibit higher solubility in aqueous 
solutions. The feature analysis results presented here provide 
a quantitative perspective on these conclusions. For instance, 
oxygen (O) atoms exert a strong positive influence on 
solubility because they not only increase the overall polarity 
of the organic molecules but also have the capacity to form 
hydrogen bonds with solvent water molecules. Conversely, 
halogens have a negative impact on solubility which can 
be quite counter intuitive (19). It is generally believed that 
halogen atoms, especially F and Cl can be hydrogen bond 
acceptors. However in reality, halogen atoms attaching to 
carbon chains could not form hydrogen bonds with water 
molecules. This underscores the pivotal role of hydrogen 

bonds in aqueous solubility, often surpassing the limited 
polarity they enhanced. It is also interesting to observe the 
trend of negative impact on solubility that I > Br > Cl > F, 
where heavier molecules are less likely to be soluble due 
to increasing London Dispersion Forces, while halogenated 
molecules are more likely soluble in hydrophobic solvents 
(20). This trait carries profound implications for drug delivery 
across cell membranes, making this extended exploration 
of solubility an area of considerable importance within the 
pharmaceutical field for further investigation.

Notably, the inclusion of functional group counts on top of 
atom counts yields a substantial improvement in the RMSE, 
as demonstrated in Table 2. This implies that the same type 
of atom when integrated into different functional groups, can 
exert varying effects on solubility. For instance, certain atoms 
like N, S, and P have the capacity to form diverse functional 
groups, which in turn may have either positive or negative 
impacts on solubility. The impact of different functional 
groups to aqueous solubility are shown in Figure S1.

It is essential to recognize that the machine learning 
models in this study can only predict a single solubility 
value for a given molecular structure. In reality, scientists 
contend with high-dimensional data encompassing a 
range of solubility values under varying conditions for 
each compound, as well as other physical and chemical 
properties. Tackling this complexity necessitates extensive 
data collection, cleaning, and algorithm development efforts. 
Ultimately, we anticipate that a sophisticated neural network-
based model, coupled with interpretable feature analysis, will 
emerge as the preferred tool of choice, surpassing the simple 
linear regression approach.

From solubility prediction to drug design
As discussed above, simple solubility models have proven 

effective for high-throughput screening, even with the long-
established GSE. Yet, the broader significance of solubility 
studies emerges in their capacity to inform and influence 
future drug design. This presents a reverse perspective: When 
endeavoring to create a drug molecule with specific solubility 
values or other desired physical attributes, the pivotal question 
becomes, which functional groups should be incorporated?

 
Figure 3: The linear regression weights of each type of atom 
feature for the Delaney dataset. Positive weights indicate features 
contributing to a relative increase in solubility, whereas negative 
weights indicate features that contribute to a relative decrease in 
solubility.

Dataset Size RMSE, Atom 
Features Only

RMSE, Atom, and 
Functional Group Features

Delaney 1127 1.13 0.96

Huuskonen 1282 1.08 0.89

AqSolDB 9982 1.83 1.73

Table 2: Performance of the Linear Regression Model with Only 
Atom Feature and with Atom and Functional Group Features on 
Three Solubility Datasets
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Using the insights gained from feature importance 
analysis in this study, it is possible to develop a general 
understanding of which functional groups to incorporate. For 
instance, to enhance aqueous solubility, introducing an OH 
group to a side chain can be an effective strategy. At the same 
time, for improving the ability to permeate cell membranes, 
the inclusion of a halogen atom might be the most suitable 
choice. However, in real-world scenarios where multiple 
factors must be considered simultaneously, the complexity 
of human decision-making can be quickly overwhelmed. 
This is precisely where the GCNN model proves invaluable. 
By leveraging a well-trained neural network that establishes 
connections between defined molecular substructures and 
their associated properties, the coupling of the GCNN with 
a molecular generative model [21] has the potential to 
enable the generation of viable drug candidates with desired 
properties on a larger scale. This approach will likely drive 
the next generation of high-throughput screening in the 
pharmaceutical industry.

Conclusion
In this investigation, we tried to predict the drug molecules 

aqueous solubility by applying two distinct models: a linear 
regression model with human-engineered features, and a 
GCNN model. Both models exhibit commendable predictive 
accuracy across diverse datasets, with the GCNN delivering 
superior overall performance. Nonetheless, the linear 
regression model offers a valuable lens into the intricate 
interplay between specific features and solubility, shedding 
light on the significance of certain atoms, functional groups, 
and hydrogen bonds in the process. The integration of a 
GCNN model with feature analysis represents a promising 
avenue for future research in this domain.
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