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Abstract
Long-term evolution experiments (LTEEs) reveal the dynamics of clonal 
compositions in an evolving bacterial population over time. Accurately 
inferring the haplotypes - the set of mutations that identify each clone, 
as well as the clonal frequencies and evolutionary history in a bacterial 
population is useful for the characterization of the evolutionary pressure on 
multiple correlated mutations instead of that on individual mutations. Here, 
we study the computational problem of reconstructing the haplotypes of 
bacterial clones from the variant allele frequencies (VAFs) observed during 
a time course in a LTEE. Previously, we formulated the problem using a 
maximum likelihood approach under the assumption that mutations occur 
spontaneously, and thus the likelihood of a mutation occurring in a specific 
clone is proportional to the frequency of the clone in the population when 
the mutation occurs. We also developed several heuristic greedy algorithms 
to solve the problem, which were shown to report accurate results of clonal 
reconstruction on simulated and real time course genomic sequencing data 
in LTEE. However, these algorithms are too slow to handle sparse time 
course data when the number of novel mutations occurring during the time 
course are much greater than the number of time points sampled. In this 
paper, we present a novel scalable algorithm for clonal reconstruction from 
sparse time course data. We employed a statistical method to estimate the 
sampling variance of VAFs derived from low coverage sequencing data 
and incorporated it into the maximum likelihood framework for clonal 
reconstruction on noisy sequencing data. We implemented the algorithm 
(named ClonalTREE2) and tested it using simulated and real sparse time 
course genomic sequencing data. The results showed that the algorithm was 
fast and achieved near- optimal accuracy under the maximum likelihood 
framework for the time course data involving hundreds of novel mutations 
at each time point. The source code of ClonalTREE2 is available at https://
github.com/COL-IU/ClonalTREE2.

Keywords: DNA sequencing; Long-term evolution experiments (LTEE); 
ClonalTREE2; 

Introduction
Long-term evolution experiments (LTEE) are often used to study the 

mechanisms of adaptation and evolution [1] and for detecting genetic 
elements under selection [2] in clonal populations of unicellular microbes 
(e.g., E. coli [3, 4, 5, 6,]) as well as multi-cellular model animals (e.g., 
fruitfly [7]). The characterization of clones resulting from novel mutations 
in the population and their ancestral relationship is a critical first step for 
subsequent evolutionary and functional analyses. A straightforward approach 
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to achieving this goal is to random sample and sequence a 
large number of individual clones from the population. In 
practice, however, this approach is quite expensive even 
with the reduced cost of DNA sequencing. As a result, bulk 
sequencing is often adopted, in which the variations and the 
variant allele frequencies are derived from the whole genome 
sequencing (WGS) of mixture of clones randomly sampled at 
different time points during the evolution process. 

It is non-trivial to reconstruct the clonal structure from 
the variant allele frequencies (VAF) [8]. Previously, we 
formulated the time course clonal reconstruction problem 
using a maximum likelihood framework [9], and proposed 
several heuristic greedy algorithms to solve the problem. In 
addition, we extended the algorithms to addressing the sparse 
time course data, which were acquired from the number of 
time points fewer than the number of novel mutations. We 
evaluated these algorithms using simulated experiments 
and observed that the greedy algorithms could accurately 
reconstruct as many clones as those reconstructed by a brute-
force algorithm or even better on average, while improving 
significantly on speed. In particular, we devised the GP-GT 
algorithm that quickly and accurately reconstructed clones for 
clonal populations containing 30 or fewer novel mutations. 
Therefore, it achieved satisfactory results on the data from the 
LTEE of wild-type E. coli [2].

Despite the success, the greedy approach has some 
limitations. First, it assumes the input VAFs are the true 
allele frequencies in the population, while in real cases, the 
VAFs are approximate statistical estimates of the true allele 
frequencies with a positive sampling variance depending on 
the number of individuals sampled from the population as 
well as the read coverage of the sequencing data [10]. This 
noise in allele frequency estimation can drastically reduce the 
solution space of clonal trees searched by our algorithms, and 
in turn reduce the chances of finding the true solution.

More importantly, the algorithm is sufficiently fast only 
when the number of novel mutations in the population during 
the period of observation is relatively small (below 30). The 
strains studied in the LTEE of E. coli [2] include wild-type 
and mismatch repair (MMR) deficient strains. The number of 
mutations expected to be observed in three years of evolution 
(~2500 generations at 1 ml transfer density) is approximately 
2.5 with a wild-type mutation rate of 1 × 10−3 [11]. For this 
case, the running time of the GP-GT algorithm is quite 
reasonable. However, for the MMR deficient strain of E. coli, 
the mutation rate is 150 times higher than that of the wild-
type, and hence, we expect several hundred novel clones to 
occur during the period of observation, which makes the time 
course data very sparse (the number of time points is only 
six). As a result, the greedy algorithms  developed previously 
[9] are too slow to handle these sparse time course data.

In this paper, we present a novel scalable algorithm

for clonal reconstruction from sparse time course data 
containing hundreds of novel mutations occurring at each 
sampled time point. We employed a statistical method 
to estimate the sampling variance of VAFs derived from 
low coverage sequencing data and incorporated it into the 
maximum likelihood framework for clonal reconstruction. 
We implemented the algorithm and tested it using both 
simulated and real sparse time-course genomic sequencing 
data. The results showed that the algorithm could finish 
within reasonable time while achieving satisfactory accuracy 
on sparse and noisy data.

Methods
Time Course Clonal Reconstruction Problem

As previously described [9] we model the problem using 
the clonal theory of evolution [12, 13] which assumes that all 
bacterial cells in an evolving population are descendants of a 
single founding clone forming new clones by accumulating 
mutations following the infinite sites assumption, i.e., a 
mutation occurs at a single locus at most once during the 
period of evolution experiment. The ancestral relationships 
between clones in such a model can be represented by a rooted, 
directed tree T known as the clonal tree where nodes represent 
clones and edges represent direct ancestral relationships. 
We define the time course clonal reconstruction problem 
(TCCRP) as the problem of inferring the unknown clonal 
tree T from a matrix of variant allele frequencies (VAFs) 
across all variational sites in a bacterial genome at a series of 
n time points [14], i.e., F = [fi,j], where fi,j indicates the allele 
frequency of the variant j at the time point i. Notably, each 
variant is first introduced by a mutation (or a set of mutations) 
j at the time point tj, generating a novel clone (denoted by 
the specific mutation j) from its parent. Note that, here, tj is 
the earliest time point t, such that ft,j > 0, and for ∀t < tj,  
 ft,j = 0. Here we consider only single nucleotide variations but 
the same approaches can be easily extended to other kinds of 
genomic variations. 

We formulated the TCCRP using a maximum likelihood 
framework [9]. Given the input matrix F = [fi,j], where 1 ≤ i, 
j ≤ n over n novel mutations (or novel clones) sorted over n 
time points (i.e., each mutation introduced at a known distinct 
time point), we want to find a directed tree T∗ = {(pr(i), i)|  
i = 1, 2, ...,n}on n nodes (where pr(i) is the unique parent node 
of node i), that maximizes the following likelihood function,

      (1)

where ci,j represents the (unknown) frequency of the clone 
j at the time point i, and ch(i) represents the set of all children 
of the node i. The probability of introducing the mutation 
i in the clone pr(i) between the time points i − 1 and i is 
approximated by the frequency of the clone pr(i) at the time 
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space may become invalid according to equation 2. Second, 
when the number of mutations occurring during the LTEE 
is much greater than the time points from which the pooled 
sequencing data are acquired, the number of new mutations 
per time point (i.e., ni) is large (e.g., in the data from 
mismatch repair deficient E. coli populations [2], more than 
50 mutations were observed at a single time point). In these 
cases, the GP algorithm needs to explore a huge space (ni!) 
of mutation permutations at each time point and becomes 
too slow. Here, we present a scalable algorithm for clonal 
reconstruction from time course genomic sequencing data 
that addresses these two challenges.

Penalizing the likelihood score for invalid solutions 
caused by noise

The strict definition of validity given by equation 2 may 
classify many clonal trees, including the true solution to be 
invalid if the input VAF estimates are noisy. We define the 
problem of finding the optimal clonal tree from noisy VAF 
input as the noisy version of the TCCRP. To address this 
problem, we aim to remove the condition defined in equation 
2 and replace it with a penalty score in the likelihood function 
(equation 1) for each solution producing negative elements in 
matrix C. This penalty should be proportional to the sum of 
all negative clonal frequencies resulting from that solution. 
We define the penalty function as described below. Firstly, 
we note that the minimum achievable standard deviation σfi,j 
of VAF estimate fi,j is given by [10],

	      		        (4)

where ri,j is the depth of coverage at the locus corresponding 
to the variant j from the sample at time point i. We assume 
that the number of sampled individuals is high enough that 
the sampling variance depends only on the number of reads 
sampled from the pooled DNA and not on the number of 
sampled individuals. This is a reasonable assumption for 
microbial population sequencing where the number of 
individuals collected for bulk sequencing is usually large. For 
any given solution, for each i, j such that

 		                       (5)

the penalty pi,j is defined as

    	       (6)

This penalty is then added to the likelihood score for 
that solution. The rationale for dividing the negative clonal 

point i − 1, which can be computed using the relationship 
between the clonal frequency matrix, C = [ci,j ], the allele 
frequency matrix, F and the clonal tree, T given by ci,j = fi,j –∑ 
k∈ch(j) fi,k [14]. Note that a clonal tree becomes invalid if

        (2)

All elements of C must be non-negative, and the rows 
of C must sum to one. We proposed a heuristic greedy tree 
(GT) search algorithm [9] to solve the TCCRP. The algorithm 
grows the directed tree from the root node (founder) such that 
at each iteration i > 1,

    (3)

provided pr(i) does not lead to an invalid solution 
(equation 2). At any given iteration, if the optimal choice led 
to an invalid solution, a backtracking approach is used to pick 
the next optimal greedy choice until all valid solutions are 
explored. The worst-case running time of this algorithm is O 
(n!), although in the best case it runs in O (n2) time.

In practice, because of the often-scattered genomic 
sequencing conducted in a time course, we may observe 
many mutations occurring at the same time point i, i.e. F may 
not be a square matrix. In this case, if the occurrence order of 
these mutations is determined, we assume that the VAFs of 
all variants remain approximately constant between the time 
points i − 1 and i, and thus we can apply the GT algorithm 
to identify the maximum likelihood clonal tree. In order to 
search for the optimal order of ni mutations at a specific time 
point i, we employed a heuristic greedy permutation (GP) 
approach: all permutations of the ni mutations at time point 
i are examined at the iteration by the GT algorithm and the 
permutation producing the maximum likelihood clonal tree 
is chosen and fixed for the subsequent iterations. Therefore, 
the resulting GP-GT algorithm searches for the clonal tree for 
each of ni! permutations at the time point i. When ni is small 
(e.g, ni < 5), the GP-GT algorithm can achieve satisfactory 
results within reasonable time [9]. We showed that the 
temporal order of mutations that can be inferred from the 
time series allele frequency data reduces the solution space of 
all possible clonal trees. Note that our problem formulation 
differs from that of another related work - Calder [15], in 
terms of the maximum likelihood framework which provides 
a scoring scheme for ranking multiple valid solutions and 
thus formulates it as an optimization problem.

Unfortunately, the GP-GT algorithm encounters two 
challenges when applied to real-world time course genomic 
sequencing data from bacterial populations. First, the VAF 
estimates from sequencing data are not accurate; as a result, 
many clonal trees (including the true solution) in the solution 
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frequencies by their corresponding standard deviations is 
that the estimated standard deviation gives us the variability 
of the clonal frequency due to noise and thus becomes an 
approximation of how likely it is for the clonal tree to produce 
a negative clonal frequency. So when the standard deviation 
is small but the magnitude of the negative clonal frequency 
is large, a higher penalty must be assigned to the solution 
compared to the solution in which the standard deviation is 
also large.

Note that this approach removes the need for backtracking 
steps in the greedy algorithms because no solution is 
considered invalid and the solution at any given iteration is 
chosen in a greedy manner based on the best likelihood score 
including the penalties for negative clonal frequencies during 
that iteration. This improves the speed of the algorithm 

compared to the backtracking approach as it converges to 
the optimal solution much faster while exploring a smaller 
number of solutions.
Reducing the permutation search space

The second challenge we attempt to address is the 
potentially large search space of mutation permutations (by 
the GP algorithm) due to the number of novel mutations 
(clones) being much larger than the number of time points. 
We first investigate the ancestry graph G [14] defined as the 
directed acyclic graph (DAG) constructed by comparing all 
pairs of columns of F and adding edges only if the ancestry 
condition is met. According to the ancestry condition, 
variation vs can be the ancestor of variation vt only when the 
VAF fi,s is greater than fi,t across all samples i. The ancestry 
condition is a necessary (but not sufficient) condition for 

Figure 1: Illustration of reducing the combinatorial search space of permutations of unordered mutations. (a) A toy VAF matrix on 
three mutations, represented in red, greed and yellow, respectively, that appear to spawn at the same time point (t2). To obtain a partial 
order for these mutations, we first construct (b) the ancestry subgraph that shows all the putative ancestral relationships among these 
mutations that satisfy the ancestry condition. From that we construct (c) a weighted ancestry subgraph (WAS), which, in addition to all 
edges in the ancestry subgraph, contains two edges between every pair of vertices not connected in the ancestry subgraph. The weights 
assigned to the edges represent the "errors due to noise" parameters that show the deviations from the ancestry condition if the respective 
edges are considered legitimate ancestral relationships. Minimizing the error due to noise can be achieved by finding (d) the minimum 
spanning arborescence of this graph, which provides a partial order given by (e) its topological sort order. (f) Given the topological sort 
of the mutations (top) of unordered mutations, we can enumerate their potential permutations through two nested loops: the outer loop 
(i) iterates over the mutations shown as dotted circles, and the inner loop (j) iterates over mutations shown as bold circles. For each inner 
loop j, the mutation vi is placed in front of vj , assigning vj the same ancestor as that of vi shown here as a double circle that matches the 
same color as vi.
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a valid solution and the clonal tree is always a spanning 
arborescence of the ancestry graph.

As illustrated in Figure 1, we adopt the ancestry graph 
approach to characterizing the optimal permutation of a 
group of mutations occurring at the same time point (e.g., 
the red, green and yellow mutations in Figure 1A). We first 
construct an ancestry graph on the subset of mutations under 
consideration at a specific time point, which is an induced 
subgraph (referred to as the ancestry subgraph; Figure 1B) 
of the ancestry graph on all mutations (clones). The ancestry 
subgraph is also a directed acyclic graph that induces a partial 
order of the mutations. Any order that violates this partial 
order violates the ancestry condition and hence is invalid. As 
a result, significantly fewer number of permutations need to 
be explored.

Note that when we construct the ancestry subgraph from 
a noisy VAF matrix F, the frequencies of potential ancestors 
may be lower than the total frequencies of their children in 
some samples due to noise. So this graph will result in some 
missing edges resulting in more number of partial orders to 
be explored than necessary. To circumvent this problem, we 
construct a weighted ancestry subgraph (WAS) that models 
the errors due to noise. First, all the edges in the ancestry 
subgraph are assigned to zero weights. In addition to these 
edges, we add two edges one in either direction between 
every pair of mutations, vs and vt where not all samples i 
have frequencies Fi,s > Fi,t or Fi,t > Fi,s (Figure 1C). The edge 
weights are assigned as,

   (7)

Figure 1C shows the WAS constructed from the partial 
allele frequency matrix F shown in figure 1A. We assume that 
the edge weights represent the likely error due to noise, i.e., 
the deviations from the ancestry condition if the respective 
edges are considered as legitimate ancestral relationships. 
We aim to minimize the total error due to noise by finding a 
minimum spanning arborescence of the WAS. We note that 
the WAS is not a DAG, and thus it does not induce a partial 
order of mutations. But the minimum spanning arborescence 
of the WAS is a DAG, and induces a partial order. We will 
exploit this order as our guide to reduce the search space of 
permutations.

Note that even when we obtain a partial order of 
mutations, there might exists too many valid permutations 
over hundreds of mutations occurring at the same time point. 
A critical observation is that the likelihood score of a clonal 
tree is dependent on the order of two mutations only if these 
two mutations share a common ancestor. Following this 
observation, the clonal tree reconstruction algorithm needs to 
search for the optimal permutation of unordered mutations 
only in a particular subset of permutations depending on the 
previously determined ancestors. Specifically, for each set of 

unordered mutations, we start with a topological sort order 
following the minimum spanning arborescence of the WAS 
constructed from the allele frequency matrix F (Figure 1F). 
For each mutation vi (dotted circles in figure 1F) in this set, 
we switch its position to the left of each mutation vj (bold 
circles) before vi in the topological sort order, and assign the 
same ancestor of vj (double circles) to vi while keeping the rest 
of the ancestral relationships the same as the optimal clonal 
tree. We then re-compute the likelihood of the resulting 
clonal tree. If the likelihood of the new clonal tree is higher 
than that of the optimal clonal tree, we replace it with the new 
tree. Finally, the clonal tree with the best likelihood score is 
output. This algorithm (ClonalTREE2: Algorithm 1) runs in 
O (n2) time on n unordered mutations occurring at the same 
time point, which is significantly faster than the GP algorithm 
that runs in O (n!) time.

Results 
Simulation Experiments

We followed the previously published simulation 
procedure [9] with a few changes as follows. In order to truly 
mimic experimental LTEE data, we applied the same quality 
control filters to the simulated data - 1) all allele frequencies 
fi,j < 0.05 were set to 0; 2) all variants (columns in F) without 
non-zero frequencies in at least two time points are removed, 
and we assigned the clonal frequencies at each time point by 
sampling a Dirichlet distribution with parameters given by 
the clonal frequencies at the previous time point instead of a 
uniform random distribution as used previously. In addition 
to the simulation of the accurate allele frequency data, we 
simulated noisy allele frequency data as follows. For each 
simulated allele frequency Fi,j, we simulated the depth of read 
coverage ri,j sampled from a normal distribution with the mean 
of 170 and the standard deviation of 40. These parameters 
were chosen to be close to those of the LTEE experiment [2]. 
Next, using this depth of coverage, we computed the standard 
deviation σfi,j of the allele frequency fi,j using equation 4. 
Finally, we generated a corresponding noisy allele frequency 
f’i,j by sampling from a normal distribution with mean fi,j 
and standard deviation σfi,j . We simulated 100 datasets with 
different number of clones - 20, 30, 40, 50, 100, 200, 400, 700 
and 1000, respectively. We generated both the accurate and 
noisy allele frequencies data in each simulation experiment. 
The number of time points in these datasets is sampled from 
a binomial distribution B (n, 0.6), where n is the number of 
clones in the respective simulation experiment.

We compared the performance of Calder [15], 
ClonalTREE (i.e., the GP-GT algorithm published 
previously [9]), ClonalTREE_P (the revised GP-GT 
algorithm that incorporates the penalty function in the 
likelihood optimization) and ClonalTREE2 on both the 
accurate and noisy allele frequencies data in terms of their 
recall (defined as the proportion of clones completely and 
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Figure 2: Comparison of the recall, running times and average clonal accuracy of Calder, ClonalTREE, ClonalTREE_P and ClonalTREE2 
on the accurate and noisy allele frequencies for different number of clones in the simulation experiments. The results are computed over 100 
simulations with different number of clones - 20, 30, 40, 50, 100, 200, 400, 700 and 1000 clones, respectively. The x-axis shows the average 
numbers of remaining clones across 100 simulations after applying the filters.	
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correctly reconstructed by the algorithm), running time and 
clonal accuracy (defined as the proportion of variants that 
are correctly assigned to all clones) (Figure 2). We used the 
default parameters and the Gurobi ILP solver when running 
Calder. Because Calder was designed for diploid genomes, 
we multiplied allele frequencies from our simulations by 0.5 
before input to Calder. We also applied the same set of quality 
control filters before running all of the algorithms so that the 
number of variations input to each algorithm is consistent.

The results of the simulation experiments showed that 
while the performance of ClonalTREE on the accurate data 
achieved about an average of 70% recall, and 85% average 
clonal accuracy in most accurate datasets, it does not perform 
well on noisy data. This is because the number of invalid 
solutions is high when the data is noisy and in many cases 
the algorithm fails to find any solution. The incorporation of 
the penalty score significantly improves the performance of 
ClonalTREE_P on noisy data because in this algorithm every 
solution is taken into consideration while the likelihood score 
with the penalty score provides a gradient among all solutions. 
The downside of ClonalTREE_P is that it is very slow on the 
experiments involving more than 30 clones. The running time 
of the algorithm increases from a few minutes to several hours 
depending on the number of unordered mutations at each 
time point (O (n!)). Hence, it is not practical for the LTEE 
data containing more than 30 mutations (e.g., for the MMR-
deficient E. coli strains). ClonalTREE2 runs much faster than 
ClonalTREE and ClonalTREE_P, while its recall is almost 
as good as or better than the other algorithms on average: the 
average recall is close to 70% and the average clonal accuracy 
approaches 80% in all datasets, and it only spends less than 
five minutes to compute the clonal tree involving more than 
300 novel mutations occurring at the same time point.

We observe that Calder runs much slower than 
ClonalTREE, with the ILP step specifically contributing to 
the majority of running time. We ran Calder only on the first 
dataset because the program took longer than 10 hours to 
complete for each simulation with number of clones more than 
15. Similarly, we ran ClonalTREE only on the datasets with 
less than 30 clones, and ClonalTREE_P only on the datasets 
with less than 100 clones because their running times were 
too long for the datasets with more clones. Calder produces 
an average recall of about 35%, which is much lower than 
ClonalTREE2 on these simulations. It should be noted that 
ClonalTREE2 is designed to find the maximum likelihood 
solution provided the likelihood assumption is true in the 
LTEE. Since the simulation algorithm generates data that is 
consistent with the likelihood assumption, ClonalTREE2 is 
bound to find better solutions compared to Calder, as Calder 
was not designed to find the maximum likelihood solution. 
In cases where the likelihood assumption does not hold, 
the solutions provided by Calder might be closer to the true 
clonal tree.

Clonal reconstruction on the E. coli populations
We applied ClonalTREE2 to the time course genomic 

sequencing data from the E. coli LTEE [2], in which 50 lines 
of wild-type and 50 lines of mismatch repair deficient (MMR-
) E. coli populations were maintained and observed for over 3 
years. Of these 100 populations, ten populations (population 
ids: 113, 125, 126, 129, 210, 221, 233, 326, 410 and 417) 
were sequenced for every six months, resulting in six time 
points of pooled Illumina sequencing reads. At the end of 
three years, eight clones from each population were isolated 
and sequenced. Three of the ten populations are wild-type 
(populations 125, 129 and 221) and seven are MMR- strains 
(populations 113, 126, 210, 233, 326, 410 and 417). We used 
ClonalTREE2 to reconstruct the clonal evolutionary history 
for each of these 10 populations.

We detected the mutations by mapping the reads to the 
reference genome E. coli K-12 MG1655 [16] and estimated 
the allele frequencies of the variations in the E. coli population 
sampled at the six time points, using the bioinformatics 
pipeline described previously [9]. Briefly, we first removed 
adapters and low quality bases using Trimmomatic version 
0.33 [17], then mapped the reads to the reference genome 
using bwa-mem version 0.7.12 [18]. We applied the following 
quality control filters to remove unreliable base calls. We first 
removed reads supporting bases with forward/reverse read 
balance less than 0.25. Then we called variants only when 
all of the following conditions are satisfied: 1) the VAF, 
estimated by the ratio of the number of reads supporting the 
variant allele to the total number of reads covering the site 
(supporting both the variant and the reference allele) is above 
0.05, 2) the total number of reads at the site is above 10; and 
3) the number of reads supporting the variant allele is above 
6. We removed the variants without non-zero frequencies 
at two or more consecutive time-points, and the variants 
whose estimated allele frequencies were greater than 0.95 in 
four or more time points, or greater than 0.9 in all six time 
points. These variants are likely to be present in the founder 
clone instead of novel mutations forming novel clones. We 
considered only single nucleotide variations (SNV) in this 
analysis. We identified 14, 18 and 10 mutations from the 
wild-type populations and 420, 10, 314, 72, 555, 115 and 899 
mutations from the MMR-deficient strains respectively. As 
expected, we observed that the number of variations in the 
wild-type populations are much smaller compared to those 
in the MMR-deficient strains (with the exception of the 
population 126 which is low due to a low read coverage in 
sequencing data). 

To evaluate the accuracy of the reconstructed clones by 
ClonalTREE2, we compared the reconstructed clones with 
the eight clones that were isolated and sequenced at the end of 
three years of LTEE. The clonal compositions (haplotypes) 
of the sequenced clones were taken from Behringer et al. [2]. 
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Figure 3: Comparison of variants inferred from the clonal sequencing and reconstructed clones using ClonalTREE2 in wild-type (left) and 
MMR- (right) E. coli populations. Each bar represents a single pair of known/predicted clones.

We compared only those variants in each sequenced clone 
that were also detected in the time series sequencing data and 
thus were used in clonal reconstruction. This set of variants	
is considered as the known clonal composition (KC) for each 
sequenced clone, against which we compared the predicted 
composition (PC) of each reconstructed clone.	

For each sequenced clone, we calculated the number of 
variants that are common in the known composition and 
the predicted composition (Figure 3). Note that the number 
of sequenced clones shown here is less than eight in some 
populations because we removed duplicated clones that share 
identical compositions of variants. Population 125 shows 
satisfactory clonal accuracy (85-100%). In the populations 
129 and 221, the number of variants shared by the sequenced 
clones and those observed in time course genomic sequencing 
are small, and thus were not useful to evaluate the prediction 
performance by ClonalTREE2. In the populations 113 and 
210, the accuracy of the reconstructed clones is satisfactory 
(59-97%), while in the population 326, the clonal accuracy 
is relatively low (33-47%), since the number of variants is 
very large compared to the number of time points, which 
significantly decreases the chance that the true clonal tree 
reflecting the mutations in the population is the one with the 
maximum likelihood that the ClonalTREE2 algorithm seeks. 
On the other hand, in the populations 233, 410 and 417, 
the number of variants shared by the sequenced clones and 
those observed in time course genomic sequencing are too 
small. Overall, in a majority of populations, ClonalTREE2 
reconstructed the clones with satisfactory accuracy, 
comparable with the accuracy in the simulation experiments. 
These results indicate ClonalTREE2 can be used for clonal 
reconstruction from real time course genomic sequencing 
data. The predicted clonal tree can be used to compute clonal 

frequencies over time, which provides useful insights about 
selections on the novel clones.

Discussion
Algorithmic approaches to characterizing the clonal 

evolutionary history of an evolving cell population is 
critical not only for understanding the mechanisms of 
evolution in microbes and microbial communities ([3, 9, 
20, 21, 22]), but also for addressing important problems in 
cancer genomics, e.g., for reconstructing tumor genomes 
and predicting putative driver mutations ([23, 24]). The 
algorithmic problem of clonal construction demonstrates 
several combinatorial and probabilistic nature of the 
problem [13, 25, 14, 8], indicating some useful avenues to 
tackle the computational challenges presented. In this paper, 
we present ClonalTREE2, a scalable algorithm for clonal 
reconstruction from time course genomic sequencing data 
under a maximum likelihood framework.The algorithm 
addresses two specific challenges - 1) sampling noise due to 
shallow sequencing depth, and 2) data sparsity due to a large 
number of mutations occurring in the population. Through 
simulation experiments that resemble the LTEE, we showed 
that ClonalTREE2 overcomes these challenges without 
compromising the prediction accuracy.
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