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Abstract
We present novoRNABreak, a unified framework for cancer specific 

novel splice junction and fusion transcript detection in RNA-seq data 
obtained from human cancer samples. novoRNABreak is based on a local 
assembly model, which offers a tradeoff between the alignment-based and 
de novo whole transcriptome assembly (WTA) methods. This approach 
is accurate and sensitive in assembling novel junctions that are difficult 
to directly align or have multiple alignments. Additionally, it is more 
efficient due to the strategy that focuses on junctions rather than full length 
transcripts. The performance of novoRNABreak is demonstrated by a 
comprehensive set of experiments using synthetic data generated based 
on genome reference, as well as real RNA-seq data from breast cancer 
and prostate cancer samples. The results show that our tool has a better 
performance by fully utilizing unmapped reads and precisely identifying 
the junctions where short reads or small exons have multiple alignments. 
novoRNABreak is a fully-fledged program available on GitHub (https://
github.com/KChen-lab/novoRNABreak).

Keywords:  novoRNABreak; unified framework; local assembly model; 
cancer specific; novel splice junctions; fusion transcripts.

Introduction
Splice junctions are conserved structures in eukaryotic genome that are 

recognized by RNA splicing machinery. Alternative splicing is one of the 
reasons for the production of many different transcripts (isoforms) from the 
same genetic locus. Dysregulation of RNA splicing has been found to be 
associated with many human diseases [1, 2], and established as one of the 
hallmarks of cancer [3]. Fusion transcripts, resulting from gene fusion have 
been reported to be the driver mutations in neoplasia [4], including TMPRSS2-
ERG in prostate cancer [5], BCR-ABL1 in chronic myeloid leukemia [6], and 
EML4-ALK in non-small-cell lung cancer [7]. Thus, the identification of the 
junctions that provides valuable insights into alternative splicing and gene 
fusion events is biologically important and can potentially apply to cancer 
diagnosis, prognosis, and therapy [8].

With the advancement of next-generation sequencing (NGS) technologies, 
rapid and cheap genome-wide transcriptome analysis makes comprehensive 
detection of junctions possible. However, most of the available tools for 
junction detection primarily rely on approaches which directly align paired-
end short reads to the genomic refer-ence and identify the junctions from 
discordant read pairs, such as TopHat [9], Bellerophontes [10], Chimerascan 
[11], TumorFusions [12], INTEGRATE [13]. Although computationally 
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efficient, alignment-based approaches are fundamentally 
limited in detecting sequences that are substantially different 
from the reference, as such are most likely containing novel 
junctions due to challenges in accurately splitting and aligning 
short fragments. Moreover, short reads/exons that can be 
easily error mapped to multiple locations will significantly 
decrease the accuracy of the pre-dictions. On the other hand, 
de novo whole transcriptome assembly (WTA) approaches, 
such as MINTIE [14], KisSplice [15], and TAP [16], 
which attempt to assemble all reads into a single consensus 
transcriptome, are computationally intensive and require high 
sequence coverage to achieve high sensitivity in assembling 
junctions. In the paper, we developed a new local-assembly-
based pipeline to overcome those drawbacks by offering a 
tradeoff between the alignment-based and the de novo whole 
transcriptome assembly (WTA) approaches.

In this study, we proposed a local assembly-based 
framework, called novoRNABreak, which modifies our well-
attested genomic structural variation breakpoint assembly 
tool novoBreak [17] to assemble novel junctions in RNA-
seq data. It is a unified framework for novel splice junctions 
and fusion transcripts detection, which can identify the novel 
splice junctions and fusion transcript events according to the 
location of the splicing (one gene or two separate genes). The 
schematic diagrams of those events are shown in Figure 1 
and Figure 2. 

With our k-mer guided local assemble model, our tool 
can fully use the unaligned sequences which is more sensi-
tive in detecting the junctions that are substantially different 
from the reference. As we will show in our experiment, more 
than 90% of the unmapped reads can be aligned confidently 
as assembled contigs after using our framework, indicating 
superior sensitivity of our tool in assembling structurally 
altered sequences in RNA-seq data. In addition, we argue 
that many alignment-based approaches, e.g., STAR [18], 
TopHat [9], etc, will produce a high proportion of multiple 
alignments, particularly for short reads or short exons. This 
proportion can be significantly reduced by locally assembling 
the short reads into longer contigs. 

The performance of novoRNABreak is demonstrated by 
a comprehensive set of experiments, including synthetic data 
generated from the genome reference, as well as real RNA-
seq data from breast cancer, and The Cancer Genome Atlas 
(TCGA) prostate (PRAD) cancer samples. Results show that 
our tool achieves higher precision by assembling short reads 
into longer contigs and higher sensitivity by fully using the 
unmapped reads.

Materials and Methods 
Alignment Strategy

novoRNABreak, which modifies our well-attested 
genomic structural variation breakpoint assembly tool 
novoBreak, assembles novel junctions from RNA-seq data. 
Un-like many alignment-based or WTA approach methods 
in the literature, novoRNABreak consists of 4 steps shown in 
the Figure 3: First, RNA-seq reads and reference sequences 
will be decomposed into k-mers. We default to 31 as the 
k-mer size to achieve a balanced performance [17] and pick 
standard transcriptome databases such as NCBI RefSeq 
[19], Ensembl [20] and GENCODE [21] as the reference. 
Second, novel splice junction k-mers, which are absent in 
either the reference transcriptome or the normal samples 
but unique in the tumor RNA-seq reads, will be identified. 
Third, reads containing novel k-mers will be partitioned into 
clusters and assembled into sequences contigs using SSAKE 
[22], meaning that each of the contig contains at least one 
novel junction. Finally, the assembled contigs, which are 
now considerably longer than raw reads, are aligned using 
Burrows-Wheeler Aligner (BWA) [23] or STAR [18]. Based 
on the alignment, the preliminary candidates of the junctions 
can be detected.

Filtering Strategy
As suggested by (24), BWA exhibited the best 

performance in terms of alignment rate and gene coverage, 
making it well-suited for our fusion transcription detection 
mode. However, it’s important to note that certain aligners 
such as STAR are specifically designed to recognize splice 
junctions, which makes it the preferred choice for our splicing 

Figure 1: The schematic diagram of splice junction: sequences to aid 
in the process of removing introns by the RNA splicing machinery 
of one gene.

Figure 2: The schematic diagram of fusion transcript: a hybrid RNA 
is composed of transcripts of two separate genes.
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junction detection mode. In the following sections, we will 
outline different filtering strategies for these two modes.

Fusion Transcript Filters

The filters used for fusion transcripts, which are applied 
to the output obtained from the BWA alignment, include: (1) 
PCR-Artifact filter: It identifies and removes all duplicated 
reads introduced by the polymerase chain reaction (PCR) 
amplification process, e.g., Picard tool from Broad Institute 
[25]. (2) Anchor length filter: Anchor length is the number 
of nucleotides overlapping each side of the break point 
and it can provide assurance of quality by removing all the 
junction-spanning reads having the anchor length lower than 
a threshold, e.g., 10bp. (3) Quality-Based filter: It uses the 
mapping quality parameter in the sam/bam file to discard the 
candidates with the mapping quality lower than a threshold. 
(4) Junction-Spanning reads filter: It considers the number 
of reads supporting the detected junctions and deletes the 
candidates with the number of supporting reads lower than a 
threshold, e.g., 3 reads, except when the contig is assembled 

by many short reads (at least 5) and has a high mapping 
quality (at least 60) at the same time. Note, the filter (1) and 
filter (4) are based on the actual mapped reads, and the filter 
(2) and (3) are based on the ensembled contigs. (5) Read-
Through transcripts filter. It removes the RNA molecules 
formed by exons of adjacent genes, usually generated by the 
RNA-polymerase failing the recognition of the gene end. (6) 
Homology-Based filter: It is designed to remove the artifacts 
that are resulting from misalignment of read sequences due 
to polymorphisms and homology [26–28], e.g., HLA genes. 
(7) Ribosomal RNA-Based filter: It will remove highly 
expressed genes that are unlikely to be involved in fusions, 
such as ribosomal RNA [26, 28]. Note: genes are annotated 
by ANNOVAR [32].

Splicing Junction Filters

The splicing junction detection process primarily involves 
the two-pass alignment approach implemented by STAR [29] 
and the filters include: (1) Junction length filter: We limit the 
length of the junction in the range of 20 to 1,000,000 bp as 

Figure 3: Alignment strategy. (A) Decompose RNA-seq reads and reference into k-mers. (B) Identify novel k-mers from tumor samples 
compared to normal samples and reference. (C) Partition reads containing novel k-mers into clusters and assemble into contigs. (D) Align 
against the genomic reference.
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this range covers most of the known intron size in eukaryote. 
(2) Anchor length filter: The same idea with fusion transcript 
filter to require reads span novel splice junctions by at least 
8 nucleotides. (3) Canonical/semi-canonical splice filter: 
The canonical splice sites are those with “GT” at the donor 
site, and “AG” at the acceptor site (“GC-AG” and “AT-AC” 
are called semi-canonical), which covers more than 99% of 
introns [31]. Candidates lacking canonical or semi-canonical 
splice sites will be subject to penalties. Candidates possessing 
“GT-AG” boundaries will be given top priority with-out any 
penalty, followed by those with “GC-AG” and “AT-AC” 
boundaries which will incur lower penalties.

Results
In this section, we present the result of a comprehensive 

set of numerical experiments, using both synthetic and read 
dataset, to assess the performance of novoRNABreak and 
compare it against that of other popular methods in the 
literature.

Experiments with Synthetic Data
We generated three sets of simulated reads (with read 

length = 50, 75, and 100 bp respectively). For each generated 
reads at 10, 25, 50, and 80-fold sequencing depths using 
the BEERS2 toolkit (https://github.com/itmat/BEERS2). In 
accordance with the findings of previous studies (33), exons 
ranging in length from 50 to 250 nucleotides have been shown 
to be optimal for efficient splicing. For our simulation data, 
we used an exon length of 120 nucleotides in average. Here, 
we compare our novoRNABreak with STAR (2Pass) (29), 
Tophat2 (34) and Portcullis (35) algorithms. The comparison 
results are shown in Figure 4. Sensitivity is calculated by 
diving the number of true positives by the total number 
of ground-truth junctions, and precision is equal to the 
number of true positives divided by the total number of the 
output junctions of each algorithm. Figure 4 illustrates that 
novoRNABreak consistently over performs the other tools 
by a significant margin in terms of precision, especially with 
shorter reads. This is understandable since the shorter reads/

Figure 4: The novel splicing junction comparison among the novoRNABreak, STAR(2Pass), Portcullis, and TopHat algorithms. The x-axis is 
the sequencing depth and y-axis is the sensitivity(left) and precision(right). For 50bp reads in (A), 75bp reads in (B), and 150bp reads in (C). 
The points connected by full lines stand for sensitivity and the points connected by the dashed lines stand for precision.
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exons are more likely to align to multiple locations, which 
can lead to false positives in detecting splicing junctions. 
As a result, novoRNABreak’s ability to identify the splicing 
junctions with higher precision is particularly useful for 
the short reads or when the junctions between small exons. 
Although the sensitivity may be slightly lower than that of 
STAR and Portcullis, it improves as the sequencing depth 
increases, bringing it closer to the others after 50-fold, which 
fall in the range of most real RNA-seq datasets.

Experiments with Real Data
In this section, we demonstrate the efficacy of our tool 

using two published real datasets. One is the breast cancer 
dataset, for which we use the experimentally validated 
ground-truth of fusion transcripts to evaluate the performance 
of our fusion transcript detection mode. Another is the TCGA 
PRAD dataset, and we highlight the advantages of our tool 
in both the novel splicing junction detection mode and the 
fusion transcript detection mode by comparing our results 
with those obtained using other tools.

Breast Cancer Dataset

The breast cancer dataset in this study consists 4 cell 
lines (BT-474, SK-BR-3, KPL-4, and MCF-7) which can 
be downloaded from NCBI Sequence Read Archive (SRA) 
with accession number SRP003186 [36]. There are total 26 
experimentally verified fusion events for breast cancer cell 
lines (The fusion CSE1L-ENSG00000236127 was removed 
from the list due to the deprecation of ENSG00000236127) 
[37]. The comparison results are shown in Figure 5, 

where the outcomes of other methods [11, 38–46] are 
picked from the review paper [47]. We can see that our 
tool detects the most of validated fusion transcript in total, 
although not the best in every cell line. We can reach a high 
sensitivity because our method can fully utilize the unmapped 
data. There are the total of 198,714,026 reads from those 4 
cell lines, of which 7,341,176 reads are unmapped (3.7%). 
By using those unmapped reads only, we assembled 106,574 
high-quality contigs, in which 8 true fusion transcripts can be 
identified and 5 of them passed all the filters (high quality). 
More importantly, 2 of them have no support from the 
mapped short reads, meaning that those 2 would theoretically 
be missed by the alignment-based methods. 

TCGA PRAD Dataset

There are 499 tumor samples and 53 non-neoplastic 
samples in the TCGA PRAD dataset. As explained in [12], 
non-neoplastic samples in TCGA are frequently obtained 
through tissue biopsy adjacent to the location of the cancer 
which have the risk of being contaminated with tumor cells. 
We identified 7 out of 53 non-neoplastic samples as true 
normal using unsupervised clustering. With those normal 
samples, our tool can directly deliver the cancer specific 
novel junctions and fusion transcripts.

To assess the performance of our tool, we first applied 
the novel splicing junction detection mode to the dataset. 
As we lack ground-truth information, we evaluated our 
tool’s advantage based on the rate of multiple alignments. 
Directly aligning the data using STAR resulted in an average 
of 28.7% multiple alignments with a standard deviation of 

Figure 5: Fusion transcript detection results for the real breast cancer data set. The y-axis bars show the number of true detected positives 
(benchmarks). The total number of fusion detections re shown on the top of the bar
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approximately 0.09. However, after using novoRNABreak 
(local assembly process), the proportion of multiple 
alignments decreased to an average of 19.8% with a standard 
deviation of 0.07. We anticipate that with sufficient coverage, 
our tool can produce more accurate results, as demonstrated 
in our synthetic experiment.

Conclusion
Here we present a unified framework for identifying tumor 

specific novel canonical splicing junctions and novel fusion 
transcripts from RNA-seq data. Our results suggest that our 
tool has a better performance by fully utilizing unmapped 
reads and precisely identifying the junctions when short 
reads or small exons have multiple alignments. Furthermore, 
the novel events detected from our method will improve our 
understanding of cancer mechanisms and facilitate discovery 
of new targets and development of RNA-based therapies.
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