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Abstract
Approximately 450,000 cases of Non-Hodgkin’s lymphoma are 

annually diagnosed worldwide, resulting in ~240,000 deaths. An 
augmented understanding of the common mechanisms of pathology among 
larger numbers of B-cell Non-Hodgkin’s Lymphoma (BCNHL) patients 
is sorely needed. We consequently performed a large joint secondary 
transcriptomic analysis of the available BCNHL RNA-sequencing projects 
from GEO, consisting of 322 relevant samples across ten distinct public 
studies, to find common underlying mechanisms and biomarkers across 
multiple BCNHL subtypes and patient subpopulations; limitations may 
include lack of diversity in certain ethnicities and age groups and limited 
clinical subtype diversity due to sample availability. We found ~10,400 
significant differentially expressed genes (FDR-adjusted p-value < 0.05) 
and 33 significantly modulated pathways (Bonferroni-adjusted p-value < 
0.05) when comparing BCNHL samples to non-diseased B-cell samples. 
Our findings included a significant class of proteoglycans not previously 
associated with lymphomas as well as significant modulation of genes that 
code for extracellular matrix-associated proteins. Our drug repurposing 
analysis predicted new candidates for repurposed drugs including 
ocriplasmin and collagenase. We also used a machine learning approach 
to identify robust BCNHL biomarkers that include YES1, FERMT2, 
and FAM98B, which have not previously been associated with BCNHL 
in the literature, but together provide ~99.9% combined specificity and 
sensitivity for differentiating lymphoma cells from healthy B-cells based 
on measurement of transcript expression levels in B-cells. This analysis 
supports past findings and validates existing knowledge while providing 
novel insights into the inner workings and mechanisms of transformed 
B-cell lymphomas that could give rise to improved diagnostics and/or
therapeutics.
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gand 18; CXCL9- C-X-C Motif Chemokine Ligand 9; LUM- 
Lumican; SLRPs- Small Leucine-Rich Proteoglycans; NS- 
Not Significant; NP- Not Present; C1QA- Complement C1q 
A chain; C1QB- Complement C1q B chain; C1QC- Comple-
ment C1q C chain; APOE- Apolipoprotein E; Lr- Likelihood 
ratio; COL1A1- Collagen type I Alpha 1 chain; COL27A1- 
Collagen type XXVII alpha 1 chain; psize- Number of Genes 
in a Pathway; NDE- Number of Differentially-Expressed 
Genes in Pathway; YES1- YES Proto-Oncogene 1 Src Fam-
ily Tyrosine Kinase; FERMT2- FERM Domain Containing 
Kindlin 2; FAM98B- Family with Sequence Similarity 98 
Member B; ROC- Receiver Operator Curve; DLBCL- Dif-
fuse Large B-Cell Lymphoma; CTNNB1- Beta-Catenin/Beta 
Catenin; JNK- Janus Kinase; IGF- Insulin-like Growth Fac-
tor; IGFBP- Insulin-like Growth Factor Binding Protein.

Introduction
Lymphomas are the most common blood cancer, which 

primarily affects lymphocytes. There are three primary cat-
egories of lymphomas including Chronic Lymphocytic 
Leukemia/Small Lymphocytic Lymphoma, Hodgkin Lym-
phoma, and Non-Hodgkin Lymphoma. There are over 90 
recognized types of Non-Hodgkin Lymphoma, which is diag-
nosed in ~450,000 patients worldwide annually, resulting in 
240,000 deaths [1]. Among Non-Hodgkin lymphomas, only 
~10-15% are T-cell lymphomas, while the remaining 85-90% 
are B-cell malignancies [2]. B-cell Non-Hodgkin Lympho-
mas (BCNHLs) pose a significant disease burden worldwide. 
BCNHL subtypes include Burkitt’s lymphoma, marginal-
zone B-cell lymphomas, follicular lymphoma, diffuse large 
B-cell lymphoma, and mantle cell lymphoma [2]. B-cell
lymphomas are dependent on their extracellular environment
for activation and transformation into malignancies, includ-
ing antigen activation of the B-cell receptor, canonical B-cell
growth signals which are also essential to the maturation of
healthy B cells, and signals delivered by other immune cells
in the follicular/germinal center lymphoma microenviron-
ment [3]. The research community has dedicated substantial
effort to identify the attributes that characterize cancers across
all types and subtypes—regardless of which tissue type first
produces malignancies. Specifically, it has been suggested
previously that all cancers share the following traits: selec-
tive proliferative advantage, altered stress response, vascular-
ization, invasion and metastasis, metabolic rewiring, immune
modulation, and an abetting microenvironment [4,5]. One
example of a molecular mechanism that is common in cancer
is malignant development through TP53 mutation, with mul-
tiple mutations in the TP53 being associated with hundreds of
cancer subtypes [6]. Though not every gene-mechanism pair-
ing will be widely found across malignant cells like TP53,
identifying shared genes and mechanisms by performing
joint secondary analysis on combined data from multiple pre-
vious research studies in a focused set of related cancer sub-

types can be beneficial [7]. We can therefore leverage known 
mechanisms from well-studied subtypes to enable quicker, 
less expensive mechanism discovery for understudied sub-
types. This approach could potentially enable researchers to 
identify shared mechanisms repurpose existing therapeutics 
to a wider swath of cancer types and subtypes. The wide-
spread adoption of RNA-sequencing (RNA-seq) has opened 
new frontiers in disease research. Rather than identifying and 
characterizing individual cellular components, transcriptom-
ic analyses can provide a mechanistic snapshot of the many 
genes that are upregulated or downregulated in response to 
a given stimulus or disease state, such as lymphoma. Char-
acterizing these transcriptional patterns can aid in the iden-
tification of genes that could be worth further experimental 
investigation due to their selective modulation in diseased 
samples. Though the RNA-sequencing samples in the current 
study were previously published, analyzing them together in 
a joint secondary analysis can grant us new insights into dis-
ease mechanisms by increasing the signal of significant genes 
and reducing the statistical “noise” caused by outliers across 
patient subpopulations. The aim of this study was to per-
form a joint secondary analysis of transcriptomic data from 
de-identified publicly available B-cell Non-Hodgkin’s Lym-
phomas (BCNHLs) clinical samples to determine the shared 
underlying molecular mechanisms and biomarkers of B-cell 
lymphomas that are detectable after cellular transformation. 
We expect our analysis to validate past findings of B-cell can-
cer mechanisms and uncover mechanisms that have not been 
previously associated with BCNHL.

Methods
Collecting Samples

RNA-sequencing samples were acquired from the Na-
tional Center for Biotechnology Information (NCBI) Gene 
Expression Omnibus (GEO) database [8] using the search 
term, “b-cell lymphoma” with the goal of finding B-cell 
non-Hodgkin’s lymphoma samples and healthy B-cell con-
trols. The automatic GEO filters “Homo sapiens” and “high-
throughput RNA-sequencing” were applied. Cell lines, 
formalin-fixed paraffin-embedded tissues, gene expression 
microarray experiments, single-cell (10X) RNA-sequencing 
experiments, xenografts, samples known to be infected with 
EBV and KSHV, and samples which contained more diverse 
cell types (i.e., whole blood, lymph node, PBMCs, brain, etc.) 
were excluded by hand. All samples that had one or more of 
these disqualifying attributes were excluded from the dataset 
prior to analysis, meaning that only a subset of the samples 
from an individual experiment may be represented in the 
joint secondary analysis. One study which matched all cri-
teria was excluded due to inconsistent and unreliable sample 
labeling. Multiple myeloma, leukemia, and Hodgkin’s lym-
phoma samples were intentionally excluded in favor of fo-
cusing on B-cell non-Hodgkin’s lymphomas. Records were 
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passed or failed against the standardized exclusion criteria 
detailed above by one team member, with some input from 
a second team member. To avoid inclusion bias, any sample 
that could not be excluded by our standardized exclusion cri-
teria was included in the study. While a subset of the healthy 
control samples was obtained from the same RNA sequenc-
ing projects as the BCNHL samples, others were obtained 
from three lymphoma-unrelated B-cell datasets with healthy 
controls to create roughly equivalent-sized BCNHL and 
healthy groups. Final dataset assembly from GEO concluded 
on October 22, 2020, resulting in a dataset of 322 samples 
(134 BCNHL samples and 188 healthy B-cell controls) from 
ten studies [9-20]. The raw data for these experiments were 
previously collected by the primary authors and conform to 
the appropriate ethical oversight to protect patient autonomy 
and patient identity. All 10 primary RNA-sequencing datas-
ets from which we gathered samples for our lymphoma joint 
secondary analysis have been published in the peer-reviewed 
literature, increasing overall confidence that each dataset has 
acceptable quality (Table 1, Figure 1).

Preprocessing of RNA-Sequencing Data

Following the manual curation of the RNA-seq samples, 
the fastq files were pre-processed as previously described 
[21]. In brief, fastq files containing RNA-sequencing data 
were downloaded from the Sequence Read Archive (SRA) 
using the sratools software package. The fastq files, the as-
sociated metadata file, and a configuration file for each data-
set were then generated and used as input to the Automated 
Reproducible MOdular workflow for preprocessing and dif-
ferential analysis of RNA-seq data (ARMOR) workflow [22]. 
A configuration file was used by ARMOR to appropriately 
set up a python-based Snakemake workflow [23]. In the AR-
MOR workflow, adapters and poor-quality regions of reads 

were trimmed with TrimGalore! [24], quality control metrics 
were calculated with FastQC [25], reads were mapped to 
the human GRCh38 transcriptome and total gene transcripts 
quantified with Salmon [26], significant differential gene ex-
pression was calculated using a negative binomial distribu-
tion implemented in edgeR [27], Gene Ontology (GO) en-
richment was performed against terms from the MSigDB [28] 
while adjusting for inter-gene correlation using the Camera 
algorithm [29], and significant splice variants were predicted 
with DRIMseq [30]. The significant differentially expressed 
genes from the ARMOR workflow were then used as input 
to the signaling pathway impact analysis (SPIA) algorithm 
to enrich differentially expressed genes against intracellular 
signaling pathways from five databases including KEGG, 
Panther, BioCarta, Reactome, and NCI [31-35]. Differen-
tially expressed genes outputted by ARMOR and DRIMSeq 
were evaluated by the effect measures log2 fold change and 
likelihood ratio respectively. Confidence in results was ac-
complished using false discovery-rate adjusted p-values.

Additional Analysis and Visualization of 
Differentially Expressed Genes and Gene Ontologies

The PRISMA flowchart template was used to generate 
figure 1, which is consistent with the accepted transparent 
reporting of joint secondary analysis generation and results 
[36]. The R package ggplot was used to construct the Fig 2 
volcano plot from using FDRs and log2 fold change values for 
each gene from the edgeR output [37]. The KEGG ontology 
was extracted from the Brite Hierarchy using existing code 
[32]. Genes included in the Brite Hierarchy were then com-
putationally matched to their corresponding edgeR log2 fold 
change values. A statistical enrichment of the KEGG gene 
ontologies was performed using the R package bc3net [38] 
prior to visualizing the bc3net enrichment results with the R 
package Treemap in Fig 3 [39].

Sample Phenotype Single End or Paired End Reads GEO Accession # Relevant Samples

Large B-Cell Lymphoma Paired End GSE153437 [9] 25

Diffuse Large B-Cell Lymphoma Paired End GSE130751 [10] 63

B-Cell Lymphoma Single End GSE110219 [11] 1

Diffuse Large B-Cell Lymphoma Paired End GSE95013 [12] 28

Follicular Lymphoma Paired End GSE62241 [13,14] 10

Diffuse Large B-Cell Lymphoma Paired End GSE50514 [15] 7

Healthy Single End GSE110219 [11] 1

Healthy Paired End GSE62241 [13,14] 4

Healthy Paired End GSE45982 [16,17] 8

Healthy Single End GSE92387 [18] 12

Healthy Paired End GSE118254 [19] 147

Healthy Paired End GSE110999 [20] 16

Table 1: Study-based origin of samples included in the joint secondary analysis.
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Biomarker Prediction using Differentially Expressed 
Gene Data

Transcript-level read counts, generated by Salmon, were 
organized into a tabular format and samples were randomly 
assigned to either the testing set (30%) or the training set 
(70%). The R package randomForest was used to run a su-
pervised classification analysis, with disease state (healthy or 
lymphoma) as the predictor, to determine biomarkers [40]. 
The initial results from the whole transcriptome were then 
reduced to the 3, 5, and 10 best-scoring transcriptional bio-
markers, based on the mean Gini impurity decrease values for 
each of the features. These values were then sorted by size to 
determine the transcribed genes from the original dataset with 
the largest association. The area under the curve (AUC) was 
calculated from the receiver operator characteristic curves 
that were generated for each set of random forest results to 

determine the efficacy of the selected biomarkers for disease 
prediction.

Drug Prediction using Differentially Modulated 
Pathways

Drug prediction was conducted using the 
Pathways2Targets2.R algorithm [41]. Significantly modulat-
ed pathways (as determined by SPIA) were used as input for 
the Pathways2Targets algorithm to determine existing drugs 
that could potentially be repurposed for BCNHL. The Path-
ways2Targets algorithm takes the significantly affected path-
ways determined by SPIA, finds the members of those path-
ways, and searches the Open Targets drug database for drugs 
known to target the proteins from each pathway. The output 
table from this process was then summarized using a custom 
R script, most_common_treatments_2021_09_19.R [42].

Figure 1: PRISMA flow diagram for transparent reporting of joint secondary analysis study selection. Contains a study-by-study breakdown 
of selection criteria. All studies included were retrieved from the Gene Expression Omnibus (GEO) database provided by NCBI.
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Results
We acquired our BCNHL samples from publicly avail-

able projects on the NCBI Gene Expression Omnibus (GEO) 
database using the search term, “b-cell lymphoma” with the 
goal of finding B-cell non-Hodgkin’s lymphoma samples 
and healthy B-cell controls [8,21]. We excluded non-human 
samples, cell lines, formalin-fixed paraffin-embedded tissues, 
gene expression microarray experiments, single-cell (10X) 
RNA-sequencing experiments, xenografts, samples known to 
be infected with EBV and KSHV, and samples which con-
tained more diverse cell types (i.e., whole blood, lymph node, 
PBMCs, brain, etc.). Study GSE142334 matched all study 
criteria, but contained file types incompatible with our bio-
informatic workflow and was excluded due to inaccessibility. 
Study GSE93627, which seemed to match all of our crite-
ria, was excluded in later stages of selection due to incon-
sistent and unreliable sample labeling. We also intentionally 
excluded multiple myeloma, leukemia, and Hodgkin lym-
phoma samples in favor of focusing on B-cell non-Hodgkin 
lymphomas. We then located additional healthy B-cell con-
trol samples from BCNHL-unrelated studies to even out case 
and control numbers, the final three studies cited in Table 1. 
In an effort to conform to best-practice PRISMA guidelines 
on transparent reporting of secondary joint analyses [36], we 
have included a detailed diagram on our sample selection 
process and PRISMA’s transparent reporting checklist (Fig 
1, S1 File). Our final dataset included a total of 322 samples 
(134 BCNHL samples and 188 healthy B-cell controls) from 
ten studies (Table 1) [9-20]. Though the samples included 
in our joint secondary analysis were all clinical samples, the 
metadata provided by each original project varied greatly in 
both quantity and nature, making it difficult to discern the ex-
tent of sample heterogeneity or homogeny for variables other 
than lymphoma subtype. Given that the aim of this study was 
to generate a mechanistic profile for many BCNHL samples 
in comparison to healthy B-cells, the only evident source of 
heterogeneity is the distribution of BCNHL types across the 
included samples. We recognize that the included samples 
were largely skewed toward the diffuse large B-cell lympho-
ma subtype, which is the most common BCNHL subtype and 
resultantly has more data available on GEO than any other 
BCNHL subtype. This comparison returned ~13,800 signifi-
cant differentially expressed genes (DEGs) (Fig 2, Table 2, S2 
and S3 Files). We then ranked this list by the FDR-corrected 
p-value for each gene. We observed that the top 20 DEGs in-
clude both novel and accepted differentially expressed genes
associated with various Lymphomas. Specifically, we con-
firmed several genes that have previously been explored or
characterized in various subtypes of BCNHL including Apo-
lipoprotein C1 (APOC1; log2FC = 6.93, FDR = 8.55 × 10−117)
and Vascular cell adhesion molecule 1 (VCAM1; log2FC =
7.85, FDR = 2.29 × 10−120) to be upregulated in BCNHLs. We
also found two pathological BCNHL genes, C-C motif che-

mokine ligand 18 (CCL18; log2FC = 10, FDR = 3.74 × 10−123) 
and C-X-C motif chemokine ligand 9 (CXCL9; log2FC = 11, 
FDR = 4.31 × 10−141) to be upregulated in BCNHL as com-
pared to healthy B-cells.

Figure 2: Visualization of Differentially Expressed Genes and Gene 
Ontologies. Differentially expressed gene volcano plot. Green dots 
represent genes which were not significantly differentially expressed 
between healthy B-cells and BCNHL, while the salmon and blue 
dots represent downregulated and upregulated genes respectively.

S.no Gene 
Symbol Ensembl ID

Log2 Fold 
Change 
(log2FC)

FDR-
corrected 
p-value

1 LUM ENSG00000139329 11.1 1.11 × 10−145

2 CXCL9 ENSG00000138755 11 4.31 × 10−141

3 C1QC ENSG00000159189 9.65 2.70 × 10−132

4 C1QA ENSG00000173372 9.54 2.03 × 10−123

5 CCL18 ENSG00000278167 10 3.74 × 10−123

6 VCAM1 ENSG00000162692 7.58 2.29 × 10−120

7 C1QB ENSG00000173369 9.4 8.19 × 10−119

8 APOC1 ENSG00000130208 6.93 8.55 × 10−117

9 AL512646.1 ENSG00000203396 -15.6 2.24 × 10−115

10 CCL19 ENSG00000172724 8.48 1.27 × 10−111

11 SLAMF8 ENSG00000158714 7.77 4.01 × 10−111

12 COL3A1 ENSG00000168542 10.1 1.67 × 10−110

13 TCIM ENSG00000176907 8.07 7.86 × 10−110

14 RARRES2 ENSG00000106538 7.25 8.21 × 10−109

15 CXCL13 ENSG00000156234 8.8 1.72 × 10−107

16 SPARCL1 ENSG00000152583 7.24 6.42 × 10−107

17 PTGDS ENSG00000107317 7.69 1.07 × 10−105

18 COL1A2 ENSG00000164692 8.33 3.70 × 10−102

19 CXXC5 ENSG00000171604 -2.73 3.70 × 10−102

20 C1R ENSG00000159403 4.7 1.41 × 10−100

Table 2: Top 20 significant differentially expressed genes between 
BCNHL and healthy samples.
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We then examined the highest-ranking novel differentially 
expressed genes from our joint secondary analysis to identify 
transcriptional mechanisms of disease, with transcripts 
reported at the gene level. The first gene we observed using 
this approach was Lumican (LUM), which is a member of 
the small leucine-rich proteoglycan family (SLRPs) [43], and 
was substantially upregulated in lymphoma (log2 fold change 
= 11.1, FDR p-value = 1.11 × 10−145). In addition, the larger 
family of SLRPs appears to play a role in BCNHL (Table 3). 
Specifically, our data show that 12/18 SLRPs are expressed 
in healthy and/or cancerous B-cells, and that 11/12 B-cell-
expressed SLRPs are significantly differentially expressed 
in BCNHL samples. We found that overall, the SLRP fold 
changes substantially differed (9/12 expressed SLRPs are 
upregulated, 2/12 are downregulated, 1/12 had no significant 
change), with the genes encoding SLRPs (especially Classes 
I and V) being well represented in the B-cell lymphoma 
transcriptome.

We found that genes encoding the Complement C1q A 
(C1QA; log2FC = 9.54, FDR = 2.03 × 10−123), Complement 
C1q B (C1QB; log2FC = 9.4, FDR = 8.19 × 10−119) and 
Complement C1q C (C1QC; log2FC = 9.65, FDR = 2.7 
× 10−132) chains were all dramatically and significantly 
upregulated in BCNHL. Complement proteins are typically 
regarded as components of the innate immune system, which 
bind to antigen-antibody complexes to facilitate the formation 
of the membrane attack complex to kill invading bacteria. 
Our finding adds to the growing body of work indicating 
an association between complement C1q expression and 
lymphoma pathology. Additionally, we detected AL512646.1 
(also known as LOC100128906 and as a WDR45-like 

pseudogene) as differentially expressed by B-cell non-
Hodgkin’s lymphoma samples, a novel observation which 
was somewhat unexpected. Though AL512646.1 is annotated 
as a pseudogene and has not been previously associated with 
cancer, the RNA-sequencing data shows that it is uniformly 
expressed in healthy B-cells and downregulated in at least a 
subset of BCNHLs (log2FC = -15.1, FDR = 2.24 × 10−115). 
Next, we used the DRIMSeq algorithm to determine which 
genes had significant differences in the presence of splice 
variants between BCNHL and healthy control samples. This 
analysis returned 320 genes for which splice variants were 
significantly different (Table 4, S4 File). Apolipoprotein 
E (APOE) was the most statistically significant splice 
variant (Lr [likelihood ratio] = 4470, # of alternate splice 
variants = 4, adjusted p-value = 0). Specifically, we observed 
the expression of APOE transcripts ENST00000252486, 
ENST00000425718, ENST00000434152, ENST00000446996, 
and ENST00000485628 to significantly differ between non-
Hodgkin’s lymphoma and non-diseased B-cells.

We also observed that Collagen type I alpha 1 chain 
(COL1A1) had significant splice variants (Lr = 1520, 
# of alternate splice variants = 12, adjusted p-value = 
5.55999999807983 × 10−315). Interestingly, our study also 
found that the COL1A1 gene was significantly upregulated 
in BCNHL (log2FC = 3.73, FDR = 9.78 × 10−48). We also 
observed novel significant splice variants in Collagen type 
XXVII alpha 1 chain (COL27A1), which was found to 
be significant in BCNHL (Lr = 1060, # of alternate splice 
variants = 7, adjusted p-value = 6.71 × 10−220). We then 
wanted to determine which functional terms in the Gene 
Ontology (GO) were over-represented by the list of DEGs 
in BCNHL. The Camera algorithm evaluated 14,901 terms 
(including gene ontologies and human phenotypes) for 
statistical enrichment against the significant differentially 
expressed genes that we generated with edgeR. Although 
there were 482 results (p-value < 0.05), none remained 
significant after multiple hypothesis correction (S5 File). 
The lack of significant results is somewhat expected given 
the overall molecular heterogeneity of BCNHL subtypes 
and the stringency of the Camera algorithm. To visualize 
the Gene Ontology changes, we used a hypergeometric 
enrichment algorithm that applied a p-value cutoff of 0.05. 
We then averaged the edgeR fold-change values for the genes 
of each gene ontology in the KEGG Brite hierarchy and 
plotted the enrichment results using the R Treemap package 
to better understand the contribution of various GO terms to 
the overall list of DEGs (S3 File). To better understand the 
results of our analysis at a more mechanistic level, we used 
the signaling pathway impact analysis (SPIA) algorithm to 
identify intracellular signaling pathways that play important 
roles in various subtypes of lymphoma after transformation. 
Briefly, this pathway-analysis algorithm generates a null 
distribution through bootstrapping to identify pathways 

SLRP 
Class

Name Log2 Fold 
Change

FDR-corrected 
p-value

Class I

DCN 2.88 1.67 × 10−41

BGN 7.88 3.22 × 10−95

ASPN 3.09 2.27 × 10−25

ECM2 2.1 1.44 × 10−17

ECMX NP NP

Class II

FMOD 5.71 3.86 × 10−61

LUM 11.1 1.11 × 10−145

PRELP 0.617 1.54 × 10−4

KERA NP NP
OMD NP NP

Class III
EPYC NP NP
OPTC NP NP
OGN NS NS

Class IV
CHAD -3.49 1.33 × 10−24

NYX NP NP
TSKU 1.37 1.62 × 10−16

Class V
PODN 1.66 5.70 × 10−10

PODNL1 -1.49 3.15 × 10−11

Table 3: Novel identification of differential expression of Small 
Leucine-Rich Proteoglycans (SLRPs) in BCNHL.

*NS = not significant; NP = not present.
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that are significantly modulated based on the DEGs. Our 
analysis revealed 33 significantly modulated pathways 
between lymphoma B-cells and non-diseased B-cells (Table 
5, S6 File). Specifically, we observed ten pathways that were 
involved with the extracellular matrix and connective tissue, 
bolded below in Table 5. The upregulation of these pathways 
indicates that transformed BCNHL likely benefits from 
modulations to the extracellular matrix.

We next used the Pathways2Targets algorithm to identify 
potentially novel drug targets for BCNHL from the signaling 
pathway results (S7 File). De novo drug development 
can require decades and billions of dollars, whereas drug 
repurposing, which is defined as finding new indications for 
existing drugs, is much cheaper and faster. Many existing 
drugs have undergone in-depth research to identify their 
target proteins, and this target information is stored in 
databases such as DrugBank and OpenTargets. In brief, the 
Pathways2Targets algorithm takes the significant pathways (as 
previously determined by SPIA), finds each protein member 
of those pathways, and searches the OpenTargets database 
[6] for all drugs known to directly interact with each protein,
and generates an extensive table containing all drugs known
to interact with protein members of the significant pathways
(S8 File). We sorted the results so that drug targets present in
multiple signaling pathways would be ranked higher (Table
6). Though Pathways2Targets results are in no way conclusive 

of drug efficacy for a novel indication, the algorithm provides 
a short-list of drugs for subsequent validation in the laboratory 
and has a track record of returning many drugs already in use 
for a given disease and several novel drug candidates [44-47]. 
Based on the Pathway2Targets output, we predicted the most 
relevant existing FDA-approved drugs for other indications 
that could affect the lymphoma phenotype are Doxycycline, 
Ocriplasmin, and Collagenase. We also identified ATN-161 
as a candidate drug, but it has only been tested in phase-two 
trials. Doxycycline is currently in use for BCNHL subtypes 
[48]. The other drug candidates are promising based on drug 
targeting data but require follow-up validation experiments.

We next used the Pathways2Targets algorithm to identify 
potentially novel drug targets for BCNHL from the signaling 
pathway results (S7 File). De novo drug development 
can require decades and billions of dollars, whereas drug 
repurposing, which is defined as finding new indications for 
existing drugs, is much cheaper and faster. Many existing 
drugs have undergone in-depth research to identify their 
target proteins, and this target information is stored in 
databases such as DrugBank and OpenTargets. In brief, the 
Pathways2Targets algorithm takes the significant pathways (as 
previously determined by SPIA), finds each protein member 
of those pathways, and searches the OpenTargets database 
[6] for all drugs known to directly interact with each protein,
and generates an extensive table containing all drugs known

Gene symbol Ensembl ID Lr* # of Alternate Transcripts Adjusted P-value
APOE ENSG00000130203 4470 4 0

COL1A1 ENSG00000108821 1520 12 5.56 × 10−315

COL27A1 ENSG00000196739 1060 7 6.71 × 10−220

RPL5 ENSG00000122406 1040 10 3.86 × 10−214

KLF6 ENSG00000067082 961 6 7.41 × 10−201

SRSF6 ENSG00000124193 954 5 1.56 × 10−200

CYBRD1 ENSG00000071967 931 6 2.17 × 10−194

PLEKHM1P1 ENSG00000214176 924 5 3.78 × 10−194

VCP ENSG00000165280 912 6 2.37 × 10−190

DDX6 ENSG00000110367 872 7 8.01 × 10−181

THRAP3 ENSG00000054118 846 3 6.63 × 10−180

FCGR2B ENSG00000072694 771 4 1.75 × 10−162

CHI3L1 ENSG00000133048 715 4 2.40 × 10−150

IFITM3 ENSG00000142089 691 3 2.53 × 10−146

ADAM28 ENSG00000042980 719 11 4.56 × 10−144

CIB1 ENSG00000185043 662 2 2.04 × 10−141

ZNF318 ENSG00000171467 645 3 1.88 × 10−136

RPS28 ENSG00000233927 621 3 3.10 × 10−131

CCDC124 ENSG00000007080 549 3 1.14 × 10−115

ZNF335 ENSG00000198026 545 3 8.02 × 10−115

Table 4: Top 20 most significant splice variants (sorted by gene).

*Lr = likelihood ratio
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Table 5: Significant differentially modulated signaling pathways include extracellular matrix.

S.no Name pSize NDE tA pGFWER Source Database
1 Integrin signalling pathway 99 86 114.394 2.39 × 10−5 Panther

2 Extracellular matrix organization 204 180 80.7398395 3.14 × 10−5 Reactome

3 ECM-receptor interaction 70 64 77.659 4.47 × 10−5 KEGG

4 Staphylococcus aureus infection 32 29 110.568396 0.000503428 KEGG

5 Complement and coagulation cascades 36 32 37.5461944 0.000674242 KEGG

6 Urokinase-type plasminogen activator (uPA) and 
uPAR-mediated signaling 28 25 130.821315 0.000740169 NCI

7 Cytokine-cytokine receptor interaction 168 140 98.294 0.000780995 KEGG

8 Focal adhesion 182 150 236.615459 0.001133449 KEGG

9 PI3K-Akt signaling pathway 271 221 260.046197 0.001344307 KEGG

10 Complement cascade 29 27 102.278583 0.001440498 Reactome

11 Systemic lupus erythematosus 17 15 67.4577222 0.001616635 KEGG

12 b cell survival pathway 22 19 26.576 0.00167109 BioCarta

13 Small cell lung cancer 78 64 121.170067 0.001930414 KEGG

14 Integrins in angiogenesis 52 41 146.143424 0.00285984 NCI

15 Olfactory transduction 93 74 -148.8965 0.002966626 KEGG

16 integrin signaling pathway 37 29 77.0156667 0.003336442 BioCarta

17 erk and pi-3 kinase are necessary for collagen binding 
in corneal epithelia 34 26 166.268917 0.003755165 BioCarta

18 RNA Polymerase I Promoter Clearance 85 72 -40.156 0.004307328 Reactome

19 Initial triggering of complement 15 14 44.508 0.004480759 Reactome

20 RNA Polymerase I Promoter Opening 39 34 -40.907 0.004675938 Reactome

21 RHO GTPases activate PKNs 67 57 39.779 0.004802382 Reactome

22 DNA Damage/Telomere Stress Induced Senescence 61 52 32.7708077 0.004980633 Reactome

23 Creation of C4 and C2 activators 7 7 27.365 0.005633091 Reactome

24 Collagen formation 66 63 26.4272897 0.006045837 Reactome

25 Activated PKN1 stimulates transcription of AR 
(androgen receptor) regulated genes KLK2 and KLK3 41 35 39.094 0.006675281 Reactome

26 MET activates PTK2 signaling 18 16 63.573 0.007079287 Reactome

27 Collagen degradation 17 15 131.8905 0.008037505 Reactome

28 MET promotes cell motility 28 24 97.5445 0.00808298 Reactome

29 Regulation of IGF Activity by IGFBP 11 10 25.958725 0.008404989 Reactome

30 Classical antibody-mediated complement activation 5 5 27.354 0.008619298 Reactome

31 Serotonin Neurotransmitter Release Cycle 11 9 -13.301889 0.015608196 Reactome

32 Class A/1 (Rhodopsin-like receptors) 81 77 5.908 0.026176599 Reactome

33 Peptide ligand-binding receptors 79 75 5.84 0.040928099 Reactome

*Abbreviations: psize = number of genes in pathway. NDE = number of genes from pathway which were differentially expressed. tA = measure
of change between healthy and lymphoma expression; directionality indicates up- or down-modulation. pGFWER = p-value with adjustments
appropriate to a multiplexed interaction network [31].

to interact with protein members of the significant pathways 
(S8 File). We sorted the results so that drug targets present in 
multiple signaling pathways would be ranked higher (Table 
6). Though Pathways2Targets results are in no way conclusive 
of drug efficacy for a novel indication, the algorithm provides 
a short-list of drugs for subsequent validation in the laboratory 
and has a track record of returning many drugs already in use 
for a given disease and several novel drug candidates [44-47]. 

Based on the Pathway2Targets output, we predicted the most 
relevant existing FDA-approved drugs for other indications 
that could affect the lymphoma phenotype are Doxycycline, 
Ocriplasmin, and Collagenase. We also identified ATN-161 
as a candidate drug, but it has only been tested in phase-two 
trials. Doxycycline is currently in use for BCNHL subtypes 
[48]. The other drug candidates are promising based on drug 
targeting data but require follow-up validation experiments.
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S.no Drug Name Drug ID
Significant 
Pathways 
Targeted

Is FDA Approved for 
Human Use in > 1 

Indication

Highest 
Clinical Trial 

Phase

Has Been 
Withdrawn

1 OCRIPLASMIN CHEMBL2095222 13 TRUE 4 FALSE

2 ATN-161 CHEMBL4297456 10 FALSE 2 FALSE

3 DOXYCYCLINE CHEMBL1200699 10 TRUE 4 FALSE

4 DOXYCYCLINE CHEMBL1433 10 TRUE 4 FALSE

5 AS-1409 CHEMBL2109413 9 FALSE 1 FALSE

6
COLLAGENASE 
CLOSTRIDIUM 
HISTOLYTICUM

CHEMBL2108709 9 TRUE 4 FALSE

7 FIRATEGRAST CHEMBL2104967 9 FALSE 2 FALSE

8 L19IL2 CHEMBL2109608 9 FALSE 3 FALSE

9 L19SIP 131I CHEMBL2109412 9 FALSE 2 FALSE

10 L19TNFA CHEMBL2109589 9 FALSE 2 FALSE

11 VOLOCIXIMAB CHEMBL2108061 9 FALSE 3 FALSE

12 ABITUZUMAB CHEMBL2109621 8 FALSE 2 FALSE

13 AL-78898A CHEMBL4594457 8 FALSE 2 FALSE

14 CILENGITIDE CHEMBL429876 8 FALSE 3 FALSE

15 EPTIFIBATIDE CHEMBL1174 8 TRUE 4 FALSE

16 ETARACIZUMAB CHEMBL1743014 8 FALSE 2 FALSE

17 HUMAN C1-ESTERASE 
INHIBITOR CHEMBL4297549 8 TRUE 4 FALSE

18 INTETUMUMAB CHEMBL1743032 8 FALSE 2 FALSE

19 PEGCETACOPLAN CHEMBL4298211 8 FALSE 3 FALSE

20 STX-100 CHEMBL2109623 8 FALSE 2 FALSE

Table 6: Predicted BCNHL drugs based on signaling pathways.

Figure 3: Biomarker Prediction Yields a Three-Gene Signature with 99% Predictive Ability. Random forest analysis was conducted using 
the normalized read counts for all sequenced genes from each sample and the disease condition associated with each sample (healthy or 
lymphoma). A) Initial random forest biomarker results quantified with mean decrease in Gini impurity and mean decrease in permutation show 
YES1, FAM98B, and FERMT2 as the highest-ranked diagnostic biomarkers (ranked by mean decrease of Gini impurity score). B) Random 
forest results for the top three genes in isolation. C) Receiver-operator characteristic curve using only YES1, FAM98B, and FERMT2 shows 
these three genes have 99.889% specificity and sensitivity when predicting BCNHL status (healthy or diseased) based on B-cell transcripts.
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Discussion
The goal of this study was to collect and analyze publicly 

available RNA-seq data from GEO to find differentially 
expressed genes, pathways, splice variants, and biomarkers 
that are relevant to BCNHL after the cells are initially 
transformed. We confirmed several biologically- and 
clinically-relevant biomarkers and pathologic mechanisms 
that were identified previously, as well as novel entities. We 
found several key genes that are significantly differentially 
expressed in BCNHL including LUM and other SLRPs, 
complement protein components, and the supposed 
pseudogene AL512646.1. We confirmed that previously 
characterized biomarkers such as APOC1, VCAM1, CCL18, 
and CXCL9 are overexpressed in BCNHL, and that 320 genes 
including APOE, COL1A1, and COL27A1 had differentially 
expressed splice variants. We additionally found a BCNHL 
reliance on the upregulation of pathways associated with the 
extracellular matrix. We also predicted three transcriptional 
biomarkers that perform well at differentiating patients who 
have BCNHL from those who do not. To our knowledge, this is 
the largest joint secondary transcriptomic analysis of primary 
human samples in the BCNHL field to-date. Two large-scale 
integrative multi-platform genomic profiling projects were 
previously completed on diffuse large B-cell lymphoma 
(DLBCL) with the aid of transcriptomic sequencing [49, 50]. 
However, their applications of the RNA-sequencing data 
are distinct from the approach and purpose reflected in this 
project. Specifically, these prior studies used RNA-seq data to 
identify causative gene fusions as well as to predict subtypes, 
and to determine the location and frequency (respectively) of 
genetic aberrations that initiate disease. In contrast, we utilized 
RNA-seq data to better characterize the gene expression 
profiles of BCNHL after transformation had occurred, which 
provides a high-level view of characteristics that are shared 
across multiple BCNHL types. Though our applications of 
RNA-seq data were distinct, we were interested to find some 
shared results. Reddy et al. found that extracellular matrix 
and lymphatic vessel gene sets were important differentiators 
between their 33 gene expression-based proposed subtypes 
[49], while we noted an overall trend of extracellular matrix-
associated pathway upregulation. Schmitz et al. noted the 
gain-of-function of multiple crucial genes along the PI3K 

pathway [50], which seems consistent with our data where 
we found two PI3K pathways to be upregulated. We believe 
that including representative samples from multiple BCNHL 
subtypes augments the signal(s) that are shared among the 
represented subtypes and could aid in the identification of 
shared mechanistic insights with reduced bias. Given our 
intentional focus on BCNHL, we did not include multiple 
myelomas, B-cell leukemias, or Hodgkin’s B-cell lymphomas. 
Promising future directions may include querying multiple 
databases for sequencing data and perhaps expanding the 
scope of future joint secondary analysis to include all B-cell 
malignancies. Since we used only publicly available data, 
there may be biases in age, gender, or ethnicity. Though there 
is previous evidence in the literature that directly associates 
BCNHL with some of our results, some of our findings are 
novel to BCNHL. We will therefore appeal to other models 
in cancer (i.e., other blood cancers, other non-blood cancers) 
in cases where no previously published research indicates the 
relationship between BCNHL and our results. Comparing 
our results against those from cancers outside of the BCNHL 
family is a direct appeal to the Hallmarks of Cancer [4]. Given 
that underlying mechanisms for cell growth, vascularization, 
disruption of the cell cycle, and other cellular attributes have 
the potential to be common across cancer subtypes, we expect 
that including research from different cancer models will 
help to accelerate research into shared cancer mechanisms. 
We therefore first pull on any research available in BCNHL, 
followed by research in other B-cell malignancies, other 
blood cancers, and finally all other cancers. We believe that 
identifying a possible mechanism for a gene that is associated 
with other cancers, but unresearched in BCNHL, is still 
relevant. We expect that a subset of these findings will justify 
additional wet lab experimentation.

Differentially Expressed Genes Suggest Shared 
Underlying Mechanisms for Lymphomas

Lumican (LUM) seems to play a role in the progression or 
non-progression of several different cancer types. Mahadevan 
et al. previously reported upregulated LUM in both T- and 
B-cell lymphomas, but offered no insights on potential
mechanisms [51]. A literature search of parallel systems
revealed that in breast cancer, high stromal-cell expression

Gene 
Symbol

Mean Gini Impurity 
Decrease

edgeR Log
Fold Change

edgeR FDR 
P-value

Disease 
Status 

Mean (Read 
Counts)

Standard Deviation 
(Read Counts)

Median (Read 
Counts) 

YES1 0.77 2.38 1.98x Lymphoma 1151.756 1246.946 629

Healthy 38.87234 66.01043 11

FAM98B 0.68 1.58 1.48x Lymphoma 1797.452 1174.797 1456

Healthy 248.4202 954.1375 32

FERMT2 0.67 2.83 1.46x Lymphoma 1246.993 1200.669 841

Healthy 32.46809 73.10299 4

Table 7: BCNHL biomarkers predicted from gene expression using machine learning.
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of LUM adjacent to the tumor stalls tumor growth, and 
lowered stromal expression of LUM correlates with higher 
breast cancer mortality rates and increased severity [52]. In 
melanoma, LUM in the extracellular matrix halts metastasis 
through direct interaction with alpha-2-beta-1 integrin [53]. 
Both breast cancer and pancreatic cancer cells have been 
documented to upregulate LUM, along with many other 
cancer types [43]. Overall, LUM expression by cancer cells 
seems to correlate with more aggressive cancers and poorer 
patient outcomes. The massive LUM upregulation illustrated 
in our samples may be because the BCNHL samples available 
on GEO were mostly from advanced or refractory cases of 
BCNHL. The prior finding that high LUM expression around 
tumors is protective against metastasis in several cancer 
subtypes indicates the potential for LUM as a cancer-stalling 
therapy. Interestingly, a subset of the members in the SLRP 
protein family have been previously identified in B-cell 
Non-Hodgkin’s lymphomas including DCN [54], BGN [54], 
ASPN [55], FMOD [56], LUM [51], PRELP [56], and TSKU 
[57]. However, other members within the SLRP family have 
not been previously considered as lymphoma biomarkers or 
potential pathology-inducing molecules. Our novel finding 
is that the SLRPs ECM2, CHAD, PODN, and PODNL1 
are differentially expressed in BCNHL. Proteoglycans have 
been shown to be associated with pro-cancer mechanisms in 
prostate, breast, colon, lung, ovary, mesothelium, pancreatic, 
lymphoma, and esophageal cancers [43]. Our results show 
two upregulated pathways in BCNHL that were previously 
shown to be mechanistically intertwined with proteoglycans 
in cancer, which are the Focal Adhesion pathway [58] and the 
PI3K-Akt signaling pathway [59]. Taken together, these data 
may suggest a connection between previously established 
proteoglycan cancer mechanisms and B-cell non-Hodgkin’s 
lymphomas. Additional work is still required to elucidate the 
role(s) that these entities play in BCNHL.

Discussing our other top DEGs in the context of other 
cancers, increased expression of complement genes C1QA 
and C1QB at week 16 of mantle cell lymphoma treatment 
by Venetoclax and Ibrutinib was significantly associated 
with a worse prognosis [60], illustrating that C1QA and 
C1QB may be associated with resistance to cancer drugs. 
Jiang et al. showed via immunohistochemistry that C1QB 
localizes to the nuclei of gastric cancer cells [61]. C1QB’s 
nuclear localization suggests that C1QB may have additional 
function(s). Upregulation of C1QA, C1QB, and C1QC in 
peripheral T-cell lymphoma [62] and upregulation of C1QC 
in Epstein-Barr Virus-positive diffuse large B-cell lymphoma 
[63] have been reported previously. Though it is possible
that BCNHL is upregulating expression of C1q chains A, B,
and C in response to underlying patient-cohort deficiency in
complement function, the whole C1q protein has been shown
to mediate metastasis, motility, growth and proliferation, and
adhesion in multiple other in-vitro and in-vivo cancer models

[64].We consider this C1q research across multiple cancer 
types to indicate that an alternate, cancer-associated C1q 
function in BCNHL merits further investigation. Our results 
add to the growing body of work suggesting a potential 
alternate function of complement proteins in cancer that 
warrants further investigation. 

In addition to our novel findings on differentially expressed 
genes, we were also able to detect statistically significant genes 
that were previously characterized in at least one subtype of 
BCNHL. The first of these proteins is Apolipoprotein C1 
(APOC1), which we observed to be upregulated in BCNHL. 
APOC1 is one of three genes whose expression levels are 
predictive of diffuse large B-cell lymphoma severity [65], and 
it is also upregulated in late stage lung cancers as compared 
to early stage lung cancers [66]. This suggests that APOC1 
may be contributing to cancer pathology across diverse 
cancers in multiple cell types. Our observation that C-C motif 
chemokine ligand 18 (CCL18), which has a well-recognized 
role in lymphoma, was upregulated in our BCNHL analysis 
is relevant since this gene assists large B-cell lymphoma in 
cell proliferation, the NF-Kappa-B pathway, and the PI3K-
AKT pathway [67]. Its upregulation in macrophages and 
dendritic cells from cutaneous T-cell lymphoma lesions was 
associated with a negative prognosis [68]. Our finding of 
C-X-C motif chemokine ligand 9 (CXCL9) to be significantly
upregulated in our analysis of B-cells is interesting since this
gene has been shown to promote the progression of diffuse
large B-cell lymphoma by halting degradation of beta-catenin
(CTNNB1) and upregulating its initial expression [69]. Our
findings support this proposed mechanism with CTNNB1
being upregulated in lymphoma (log2FC = 1.1, FDR = 1.54
× 10−33), while other elements of the CTNNB1 “destruction
complex” were mostly downregulated. Specifically, several
of the known components of the destruction complex that
were detected in our analysis include APC (log2FC = -0.755,
FDR = 3.51 × 10−11), GSK3B (log2FC = -0.692, FDR =
2.62 × 10−3), CSNK1A1 (not significant), AXIN1 (log2FC
= 0.533, FDR = 3.96 × 10−10), BTRC (not significant), and
FBW11 (log2FC = -0.692, FDR = 5.60 × 10−20). We identified
several other genes that may be relevant to cancer pathology.
Small but significant upregulation of AXIN1 is of interest
for additional investigation due to its ties to CXCL9, and
is not known to have multiple heterogenous functions
[70]. AXIN1 regulates the Wnt and Janus Kinase (JNK)
signaling pathways [71], and it regulates the Wnt pathway
by degrading CTNNB1 [50]. If CTNNB1 is not degraded by
AXIN1, CTNNB1 translocates to the nucleus and interacts
with LEF1, which we found to be significantly upregulated,
and TCF7 (not significant in this study), causing transcription
of Wnt pathway target genes to occur [72, 73]. Wnt helps to
regulate cell cycle and contributes to the increased growth
rate of many cancer types [74]. AXIN1 activates the JNK
signaling pathway by binding to MAP3K1, which we found
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to be significantly downregulated, or to MAP3K4, which 
was significantly upregulated [75]. Since CTNNB1 has 
been shown to contribute to apoptosis resistance in multiple 
myeloma cells [76], it is possible that BCNHL’s decreased 
ability to destroy CTNNB1 in may contribute to a similar 
pathogenic mechanism. Finally, VCAM1 upregulation is 
associated with a poor prognosis for patients with non-
Hodgkin's lymphomas, and VCAM1 is under investigation as 
a potential serum biomarker for assessing disease progression 
[77]. Adhesion molecules such as VCAM1 promote cancer 
metastasis, or in the case of blood cancers, extravasation, by 
allowing cancer cells to exit the bloodstream and integrate 
with healthy tissues throughout the body [78]. 

Splice Variants Suggest Relevance to Lymphomas
To better understand the contribution of differentially 

expressed splice variants to disease, we examined the 
highest-ranked DRIMseq results. Our observation that 
Apolipoprotein E (APOE) was the highest-ranking splice 
variant result for BCNHL resonates with previous findings 
that associate this gene with pancreatic cancer pathology 
[79]. In addition, pediatric patients with malignant lymphoma 
and acute lymphoblastic leukemia who express isoforms E3 
and E4 of APOE are at higher risk of developing extreme 
hypertriglyceridemia [80]. Though little research has been 
done concerning the mechanisms of APOE in BCNHL, 
we believe that APOE may be contributing to disease by 
participating in the Regulation of Insulin-like Growth Factor 
(IGF) activity by Insulin-like Growth Factor Binding Protein 
(IGFBP) Pathway, which is we found to be a significantly 
modulated pathway that includes APOE. The significance of 
APOC1 as a DEG in BCNHL, paired with the evidence of 
significant APOE splice variants suggest that apolipoproteins 
may be useful targets for future BCNHL treatments. Our 
observation of Collagen type I alpha 1 chain (COL1A1) as 
a highly ranked splice variant result is novel to the best of 
our knowledge. However, the literature indicates that the 
COLA1A-014 transcript regulates the CXCL12-CXCR4 
axis in gastric cancer, leading to tumor progression [65]. In 
addition to displaying significant differences in splice variant 
expression, we also found COL1A1 to be significantly 
upregulated in BCNHL. COL1A1 has previously been 
reported to be upregulated in peripheral T-cell lymphoma 
[32]. In Hodgkin’s lymphoma, COL1A1 overexpression is 
associated with epigenetic silencing of the RNA demethylase 
ALKBH3 and reduced survival [81]. COL1A1 is a member 
of several of our significant upregulated pathways involving 
the extracellular matrix (ECM-receptor interaction, Focal 
adhesion, Extracellular matrix organization, and Collagen 
formation). This involvement in extracellular matrix-
related pathways strengthens the case that the mechanism 
of COL1A1 may involve tumor cell interaction with its 
outer environment. Collagen type XXVII alpha 1 chain 
(COL27A1) having significant changes among its expressed 

splice variants in BCNHL is interesting since it was 
recently reported as being overexpressed in adenoid cystic 
carcinoma [82]. Like COL1A1, COL27A1 is a member of the 
upregulated Extracellular matrix organization and Collagen 
formation pathways, suggesting that COL27A1 could play a 
role in BCNHL extravasation.

Extracellular Matrix-Related Pathways may 
contribute to Disease

Our signaling pathway enrichment analysis broadened the 
scope of our analysis and interpretation. Many of our findings 
supported an interesting reliance of BCNHL on pathways 
associated with the extracellular matrix. Recent research has 
suggested the importance of extracellular matrix components 
in reactivating quiescent cancer cells through the β1-integrin 
signaling pathway [83]. It would follow that interaction with 
extracellular matrix components also plays a role in regulating 
cancer cells. To our knowledge, no studies have reported the 
integrin signaling pathway to be activated in BCNHL, though 
it has been reported as activated in the closely-related cancer 
NK/T-cell lymphoma [51]. The activation of these pathways 
suggests that malignant BCNHL cells may have an advantage 
by interacting with the extracellular matrix. Such interactions 
with the extracellular matrix are typically considered to be 
an important part of metastasis [78]. We found this result to 
be interesting since lymphomas are liquid tumors, unbound 
by extracellular matrix. This upregulation of pathways 
allowing interaction with the extracellular matrix may 
suggest that BCNHL could be invading non-lymphatic and/
or non-circulatory tissues. The trend of extracellular matrix 
interaction is also seen in the DEG results, adding support 
to the idea that interaction with the extracellular matrix is 
important for BCNHL growth and survival. Additionally, 
COL1A1 and COL27A1, which are members of extracellular 
matrix-related pathways, are two of the genes with the most 
significantly differential expression of splice variants.

Drug Prediction Algorithm Returned both Tested 
and Novel Candidates

Of our top drug results, doxycycline is currently in use 
for ocular B-cell lymphomas [84, 85]. It is additionally under 
investigation for diffuse large B-cell lymphoma; recent work 
found doxycycline suppresses diffuse large B-cell lymphoma 
growth in vitro and in vivo via CSN5 inhibition [48]. ATN-
161 is a novel drug candidate for BCNHL. Though it has 
only been tested in phase two of clinical trials, it has been a 
successful drug against refractory solid tumors, making it a 
promising drug candidate for other susceptible malignancies 
[86]. ATN-161 suppresses cancer via integrin beta1 
alpha5 antagonism, disabling invasion and metastasis [87]. 
Ocriplasmin reverses vitreomacular adhesion via interaction 
with fibronectin and laminin [88]. Though ocriplasmin has 
never been used in cancer before, it may be a promising drug 
candidate due to its ability to modulate adhesion. Collagenase 
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clostridium histolyticum is under investigation for treating 
collagen-rich uterine fibroids and was successful at reducing 
the stiffness of the tumors [89]. These predictions justify 
further validation experiments to determine their relevance 
in human BCNHL.

Machine Learning Predicts Novel Biomarkers of 
BCNHL

YES1, FERMT2, and FAM98B are novel biomarkers 
not previously associated with BCNHL. However, each has 
well-documented cancer associations. YES1 is a tyrosine 
kinase which regulates cell cycle and apoptosis in vitro and 
cell growth in vivo of tumors with YES1 amplification [90]. 
YES1 has been previously identified as a biomarker for non-
small cell lung cancer and esophageal adenocarcinoma [91, 
92] and may be a potential membrane biomarker. YES1
can anchor to the inner membrane with help from peptide
SMIM30 [93], but whether it can flip to the outer leaflet
has not been investigated. The role of YES1 in BCNHL
pathology also needs additional investigation. FERMT2
has been pinpointed as a biomarker for other cancers
previously including non-small cell lung cancer and prostate
cancer [94, 95], but not for BCNHL. FERMT2 stabilizes
CTNNB1, which is a well-documented activator of oncogene
transcription, and is implicated in Wnt pathway regulation
[96]. Additionally, FERMT2 enhances integrin signaling and
mediates migration, invasion, and focal adhesion [97, 98].
Though FAM98B has been shown to play an important role
in the development of multiple cancers, it has not previously
been identified as a biomarker for any cancer. FAM98B is
an arginine methyltransferase utilized in tumorigenesis and
works in tandem with DDX1, a pan-cancer marker, in RNA
metabolism/processing [7, 80]. Like YES1 and FERMT2,
FAM98B has not been previously identified as a biomarker
for BCNHL. These three genes have substantial diagnostic
potential as a liquid biopsy that could be generalizable
across B-cell non-Hodgkin’s lymphoma subtypes. Further
experimental validation is needed to determine whether these
are suitable as diagnostic or prognostic biomarkers.

Conclusions
In summary, our joint secondary analysis identified many 

significant differentially expressed genes and pathways that 
play a role in B-cell non-Hodgkin’s lymphomas. Our findings 
confirm results of previous BCNHL research, indicating that 
the statistical analyses applied within our computational 
workflow pipeline are effective at accurately identifying 
statistically significant genes, splice variants, and pathways 
with clinical and pathological relevance. Additionally, 
several of our results are novel, which need additional 
validation in future experiments. It is likely that at least some 
of these novel findings were detected due to the ability of 
our joint secondary analysis to reduce the statistical “noise” 
produced by outliers from individual studies and increase the 

biologically-relevant signal. Specifically, our preliminary 
findings suggest that LUM and 10 other small leucine-rich 
proteoglycans are significantly differentially expressed in 
BCNHL, that AL512646.1 is not a pseudo-gene, that APOE, 
COL1A1, and COL27A1 have significant differentially 
expressed splice variants in BCNHL, and that BCNHL is 
strongly reliant on the overexpression of extracellular matrix-
associated pathways. The predominant drug prediction results 
nearly universally targeted extracellular matrix-associated 
mechanisms and has yielded several promising new potential 
drug candidates including ocriplasmin and ATN-161. Our 
random forest biomarker discovery pinpointed three novel 
biomarker genes not previously associated with BCNHL, 
YES1, FERMT2, and FAM98B, which show high fidelity in 
predicting lymphoma presence based on transcriptional levels 
in B-cells. We believe that additional experiments are needed 
to validate our results. These findings shed additional light 
on the underlying intracellular mechanisms of BCNHL and 
could be used in the development of improved diagnostics and 
therapeutics to further improve human health. We anticipate 
that future directions after wet-lab validation could include 
evaluating FAM98B, FERMT2, and YES1 expression in 
liquid biopsy as a diagnostic tool, investigating the utility 
of the predicted drugs against BCNHL, and determining the 
roles of the genes identifying by our analysis in BCNHL 
pathology.
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