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Abstract 

The interpretation of imaging in medicine in general and 

in oncology specifically remains problematic due to 

several limitations which include the need to incorporate 

detailed clinical history, patient and disease-specific 

history, clinical exam features, previous and ongoing 

treatment, and account for the dependency on 

reproducible human interpretation of multiple factors 

with incomplete data linkage. To standardize reporting, 

minimize bias, expedite management, and improve 

outcomes, the use of Artificial Intelligence (AI) has 

gained significant prominence in imaging analysis.  In 

oncology, AI methods have as a result been explored in 

most cancer types with ongoing progress in employing 

AI towards imaging for oncology treatment, assessing 

treatment response, and understanding and commu-

nicating prognosis. Challenges remain with limited 

available data sets, variability in imaging changes over 

time augmented by a growing heterogeneity in analysis 

approaches. We review the imaging analysis workflow 

and examine how hand-crafted features also referred to 

as traditional Machine Learning (ML), Deep Learning 

(DL) approaches, and hybrid analyses, are being 

employed in AI-driven imaging analysis in central 

nervous system tumors. ML, DL, and hybrid approaches 

coexist, and their combination may produce superior 
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results although data in this space is as yet novel, and 

conclusions and pitfalls have yet to be fully explored. 

We note the growing technical complexities that may 

become increasingly separated from the clinic and 

enforce the acute need for clinician engagement to guide 

progress and ensure that conclusions derived from AI-

driven imaging analysis reflect that same level of 

scrutiny lent to other avenues of clinical research. 

 

1. Introduction 

The interpretation of imaging in medicine in general and 

in oncology specifically remains problematic due to 

several limitations which include the need for detailed 

clinical history, patient and disease-specific history, 

clinical exam features, previous and ongoing treatment, 

and the dependency on reproducible human 

interpretation when multiple factors are involved, and 

data sources are incompletely linked. To standardize 

reporting, minimize human bias, expedite management, 

and most importantly improve outcomes, the use of 

artificial intelligence (AI) has gained significant prom-

inence in imaging analysis [1-4]. AI-driven methods 

have gained prominence in diagnosis (as exemplified by 

Computer-Aided Detection (CADe) systems and 

Computer-Aided Diagnosis (CADx) systems) for 

tuberculosis [5, 6], lung cancer [7, 8] and metastatic 

disease to the brain[9] and also been applied to multiple 

other areas of clinical need [4] including notably infec-

tious diseases as described in the context of COVID-19 

[10-12], internal medicine[13], diabetic retinopathy [14]. 

In oncology, AI methods are being explored in most 

cancer types including prominently in lung [8, 15], 

breast [16, 17], prostate [18], central nervous system 

cancers [13,19-26], and other malignancies [27]. There 

is ongoing progress in employing AI methods towards 

imaging for oncology treatment e.g., generating 

radiation therapy volumes [28], assessing treatment 

response [29], and understanding and communicating 

prognosis [19, 30]. Challenges relate to limited available 

data sets, variability in imaging changes over time 

present even within any one disease entity contingent on 

patient and disease-related factors, further augmented by 

a growing variability in analysis approaches [30-33]. In 

this descriptive review, we will review the imaging 

analysis workflow and examine how hand-crafted 

features also referred to as traditional Machine Learning 

(ML), Deep Learning (DL) approaches, and hybrid 

analyses that combine both approaches are being 

employed towards advancing AI-driven imaging 

analysis in central nervous system tumors.  

 

1.1. The imaging analysis workflow 

To examine the variability in technical approaches to 

imaging analysis, a review and definition of the imaging 

analysis workflow are necessary (Figure 1). A number 

of publications have now reported on the workflow 

involved in harnessing quantitative data embedded in 

images for eventual analysis in a variety of clinical 

settings, in the context of the COVID-19 pandemic, and 

in multiple oncologic settings that are imaging driven [2, 

11, 16, 25, 34, 35]. All aspects and terms involved in the 

image analysis workflow continue to evolve and grow in 

complexity (Figure 2). Each aspect of the workflow is 

the subject of extensive ongoing research and 

publications [3, 36-39]. In a recent review of 

publications related to DL and imaging analysis 

spanning 2012 to 2020, brain, prostate, and diabetic 

retinopathy-related studies were mature research topics 

in the field with breast- and lung-related studies in a 

stage of rapid development. Segmentation and 

classification tasks were the primary purposes of DL and 

imaging analysis papers [3]. The rapid evolution and 
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growth of publications in the field, has made it more 

challenging for clinicians to stay connected to the 

complexity of AI-driven analysis and to transparently 

evaluate different approaches [2, 37, 40, 41]. This is 

particularly difficult since there is significant 

heterogeneity in the approach taken, with some clinical 

aspects analyzed using traditional Machine Learning 

(ML), Deep Learning (DL), or a combination of both. 

Various data sources are being employed, at times 

discrepant features identified by means of alternate 

methods, heterogeneous validation of results, and 

limited reproducibility persist. 

 

 

 

Figure 1: AI-driven image analysis workflow, traditional machine learning, deep learning and hybrid models 
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Figure 2: The overview of the feature extraction methods 

 

2. Image Preprocessing 

The imaging analysis workflow begins with image acqu-

isition and registration followed by pre-processing to 

address noise, inhomogeneity, variability in intensity 

(e.g., different vendors), in central nervous system 

cancers imaged with MRI, capturing non-brain tissue 

(e.g., skull). Pre-processing techniques include therefore 

skull stripping, de-noising, bias 

field correction, and registration all of which are used to 

prepare brain MRI data for automatic brain tumor 

segmentation and analysis [42]. The importance of pre-

processing as the cornerstone of all steps that follow it, 

cannot be understated [30, 33, 43-45]. With respect to 

the impact of preprocessing on the scanner dependence, 

several preprocessing techniques have been employed in 

the literature: 8-bit global rescaling, 8-bit local rescaling, 

bias field correction, histogram standardization, and 

isotropic resampling [45].  Um et al. employed two 

independent GBM cohorts (50 cases from the  Cancer 

Genome Atlas Glioblastoma Multiforme (TCGA-GBM)  

dataset and 111 cases from their institution), each case 

consisting of 3 MRI sequences (FLAIR, T1-weighted, 

and T1-weighted post-contrast) and found that 

histogram standardization contributed the most in 

reducing radiomic feature variability reducing the 

covariate shift for three feature categories and 

successfully discriminating patients into groups of 

different survival risks [45]. The effect of image 

preprocessing with respect to intensity inhomogeneity 

correction and noise filtering and its impact on the 

robustness and reproducibility of radiomics features was 

examined by Moradmand et al. who extracted 1461 

radiomics features from multimodal MR images of 

glioblastoma tumors focusing on GBM subregions (i.e., 

edema, necrosis, enhancement, and tumor) and using 

FLAIR, T1, T1C, and T2 volumes for five preprocessing 

combinations (in total 116 880 radiomic features) and 

found that necrosis regions had a higher number of 

highly robust features as compared to edema [44]. They 

concluded that high reproducible features were more 

readily identified after bias field correction and bias 

field correction followed by noise filtering as compared 

with noise smoothing or noise smoothing followed by 

bias correction [44]. By contrast, Baessler et al., 

investigated both reproducibility and repeatability of 

radiomic features using a physical phantom scanned 
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using different sequences and found that radiomic 

features extracted from FLAIR (Fluid Attenuated 

Inversion Recovery) images were more repeatable than 

features from T1- and T2-weighted images [43].  These 

studies reinforce the importance of preprocessing in 

terms of the robustness and reproducibility of MRI-

based radiomic features and the identification of 

generalizable and consistent preprocessing algorithms 

[33]. 

 

3. Segmentation 

Segmentation follows pre-processing and can be a 

manual or automated process depending on the human 

involvement, often increasingly achieved using deep 

learning [3, 20, 30, 42, 46-53]. Segmentation in and of 

itself is a significant area of active research and 

evolution [51]. As a crucial initial step, in neuro-

oncology imaging analysis, it allows for the delineation 

of different tumor tissues (active tumor, edema, and 

necrosis) from normal brain tissues (Figure 1).  

Variability in approach here is significant as manual 

segmentation as might be performed by a clinician is 

time-consuming, requires significant expertise, and is 

subject to human interpretation. Automatic or semi-

automatic methods are increasingly employed, and the 

field has been growing in part spurred on by the Brain 

Tumor Segmentation (BraTS) challenges [54]. 

Depending on whether the segmentation method initially 

uses annotated data to eventually automate the process 

using ML or DL, it may be supervised (using annotated 

data), unsupervised (no training or annotated data is 

employed) or a hybrid of both (Figure 3A) [55, 56]. 

Automated segmentation can involve classic radiomic 

machine learning methods such as comparing Support 

Vector Machine (SVM) or be performed using Deep 

Learning (DL) with Convolutional Neural Networks 

(CNN) (DL) and data has shown that both approaches 

may be reliable and fast, however, CNN technique may 

outperform SVM in the accuracy of segmentation with 

requirements of significantly enlarged data set, long 

computation time and high-performance computer [57]. 

Singh et al. produced a thorough review of publicly 

available automatic brain segmentation methodologies, 

machine learning models, recent advancements, and 

their comparison [31]. A discussion of the terms [58] 

including overfitting (i.e., model will only memorize the 

training data, suppressing the ability of CNN to 

generalize to unseen invariant data) and underfitting (i.e. 

model is not adequately trained and cannot capture the 

relationship between features and target labels) (Figure 

3B) [56], is important to conceptualize the potential 

pitfalls embedded in AI approaches as related to any 

aspect of the imaging analysis workflow. Overfitting 

and underfitting represent potential modeling errors. 

Overfitting, as opposed to underfitting, is more often 

identified since it can be the result of small datasets that 

attempt to “stretch” the conclusion to previously unseen 

data. Overfitting can be addressed by employing large 

data sets (the size of which is under debate) and may 

also be addressed by employing data augmentation 

where the data sets may be artificially grown using 

image transformations [59]. Overfitting can also be the 

result of overtraining and this aspect can be addressed 

through cross-validation (data resampling method to 

assess the generalization ability of predictive models and 

to prevent overfitting)[60]. Underfitting on the other 

hand may be the product of inadequate training or 

insufficient features in the model. Both modeling errors 

can be identified by assessing the model`s performance 

metric [61]. 
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Figure 3: A) Supervised and unsupervised machine learning [55]. B) Data overfitting and underfitting [56]. 

 

3.1. Feature extraction, feature selection, and the 

creation of machine learning models  

Feature extraction, feature selection, and the creation of 

machine learning models for predictive and prognostic 

applications follow segmentation and are most often the 

focus of discussion since the perception is that it is this 

step that is most closely connected to clinically 

meaningful results [30]. Feature extraction is a process 

frequently used in pattern recognition and image 

processing and is applied to reduce the size of the input 

data and the number of required resources and to obtain 

informative and discriminative data (Figure 1). Feature 

extraction methods can be split into hand-crafted or deep 

(learned) features concerning machine or deep learning 

approaches applied. Hand-crafted features can be shape-

based, texture-based, and/or color-based (Figure 2). On 

the other hand, the feature selection stage provides a 

dimensionality reduction that can be defined as finding a  

 

subset of x features from all features set y, where x ≤ y. 

It aims to reduce the number of variables for the 

following step (i.e., machine learning). Feature selection 

methods are essentially grouped into three categories 

based on evaluation of objective function concerning 

information content, or predictive models: filters, 

wrappers, and embedded methods [62]. Methods for 

feature extraction and selection are actively evolving. In 

ML feature selection measures carry significant 

importance. Increasingly data is evolving showing that 

ML-based imaging analysis is vulnerable to feature 

selection [61, 63]. In a recent study where radiomics-

based ML algorithms in Differentiating Glioblastoma 

(GBM) from primary central nervous system lymphoma 

(PCNSL) were evaluated, 5 selection methods (distance 

correlation, random forest, Least Absolute Shrinkage 

and Selection Operator (LASSO), eXtreme gradient 

boosting (Xgboost), and Gradient Boosting Decision 
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Tree) and 3 radiomics-based ML classifiers Linear 

Discriminant Analysis (LDA), Support Vector Machine 

(SVM), and Logistic Regression (LR)) were compared 

[63]. The authors noted that the most optimal 

discriminative performance was observed among all 

classifiers when combined with the suitable selection 

method. For LDA-based models, the optimal one was 

Distance Correlation + LDA with AUC of 0.978. For 

SVM-based models, Distance Correlation + SVM was 

the one with highest AUC of 0.959, while for LR-based 

models, the highest AUC was 0.966 established with 

LASSO + LR [63]. In a literature review spanning 2013 

to 2018, LR and LASSO were the two most used 

techniques for feature selection [64]. Following a recent 

metaanalysis of radiomic studies wherein the primary 

outcome was the degree of repeatability/reproducibility 

of a radiomic feature with the secondary outcomes being 

the impact of image acquisition and reconstruction 

settings, preprocessing steps, and tumor segmentation on 

the reliability/reproducibility of radiomic features and 

the metrics used for reporting on 

reliability/reproducibility, Pfaehler et al. proposed a 

radiomic reporting checklist to evaluate the quality of 

reporting of analyzed studies [33].  In terms of 

convolutional neural network-derived networks, U-Net, 

ResNet, and VGG are the most frequently used [3, 65, 

66]. GAN-derived networks were widely developed and 

applied in 2020, and transfer learning was highlighted in 

the COVID-19 studies [3]. In-depth discussion of these 

techniques is beyond the scope of this manuscript but 

has been exhaustively published on and important 

references are noted with excellent recent reviews 

Sahiner, Greenspan, Shin [65, 66]. From a clinician 

standpoint, there is a significant evolving challenge in 

grasping rapid progress and complexity of the 

techniques employed as part of the image analysis 

workflow, and a growing body of papers have been 

aimed at expanding on the nuances required to evaluate 

publications and conclusions based on AI-driven data 

analysis [27, 41, 67]. According to a recent review, the 

annual growth rate in the number of published papers 

was 177.82% and radiomics was found to be at a more 

mature stage for lung, breast, and prostate cancers than 

for other sites [3, 64]. Radiomics studies primarily 

focused on radiological characterization and monitoring 

[64]. Of note, non-clinical researchers without a medical 

background dominated radiomics studies (70.52%), the 

vast majority of which only highlighted positive results 

(97.80%) while downplaying negative findings [64]. 

 

3.2. Traditional machine learning methods based on 

hand-crafted features  

Radiomics is defined as the extraction of “hand-crafted” 

features from routine radiological scans (X-rays, CT, 

MRI, and PET) that quantitatively capture the textural 

and morphological characteristics of a given tumor [30]. 

This is also often referred to as “traditional” radiomic 

analysis. This type of extraction of information from 

imaging converts an image to a predefined list of 

attributes, such as shape, intensity, texture, is referred to 

as “feature extraction” in the context of traditional 

machine learning [68]. These “hand-crafted” features 

can then be used in traditional learning algorithms, such 

as Random Forest (RF), Support Vector Machines 

(SVM) and k-nearest neighbors (Figure 4A) [69, 70]. 

Using imaging as an input for traditional machine 

learning algorithms requires an additional feature 

extraction step, making it distinct from Deep 

Convolutional Neural Networks (DCNNs) which learn 

image features as an implicit step in the process of 

optimizing output performance accuracy, discussed in 

the next section [71, 72]. Hand-crafted features are 



J Biotechnol Biomed 2022; 5 (1): 1-19                                                            DOI: 10.26502/jbb.2642-91280046 

 

 

Journal of Biotechnology and Biomedicine                                                                                                                     8 

  

obtained using software such as Pyradiomics which is an 

open-source python package for the extraction of 

radiomics features from medical imaging [73]. A recent 

meta-analysis revealed that Pyradiomics was used in 

eight human studies and one phantom study, and was the 

most frequently used software, with others using open-

source software (CGITA, MaZda, LifeX, IBEX) and 

others using Matlab [33]. In imaging analysis of central 

nervous system tumors, analyses that employ traditional 

radiomic analysis have been applied to combine imaging 

and molecular markers notably O6-methylguanine-DNA 

methyltransferase (MGMT) [74-77], IDH [74, 78-80], 

1p19q [81, 82], H3K27M [83]. The diagnostic 

performance of radiomics using ML algorithms to 

predict MGMT status in glioma patients was the subject 

of a comprehensive literature search of PubMed, 

EMBASE, and Web of Science until 27 July 2021 [75] 

which identified 15 studies with 1663 patients and 

documented a pooled sensitivity and specificity of ML 

for predicting MGMT promoter methylation in gliomas 

of 85% and 84% in the training cohort (n=15) and 84% 

and 78% in the validation cohort (n=5) with an AUC of 

0.91 in the training cohort and 0.88 in the validation 

cohort concluding that ML can predict MGMT promoter 

methylation status in glioma with a higher performance 

than non-machine learning methods [75].  Diffusion- 

and perfusion-weighted MRI radiomics models that may 

predict Isocitrate Dehydrogenase (IDH) mutation and 

tumor aggressiveness in diffuse lower grade glioma 

were explored by Kim et al. who compared 

multiparametric and conventional MRI radiomics 

models using the area under the receiver operating 

Characteristics Curve (AUC) while optimizing the 

multiparametric MRI radiomics model using a random 

forest feature selector, finding that for IDH mutation, 

multiparametric MR radiomics showed similar 

performance (AUC 0.795) to the conventional radiomics 

model (AUC 0.729) but in tumor grading, the 

multiparametric model with Attenuated Diffusion 

Coefficient (ADC) features showed higher performance 

(AUC 0.932) than the conventional model (AUC 0.555). 

This was confirmed following independent validation 

with AUCs of 0.747 for IDH prediction and 0.819 for 

tumor grading with the multiparametric MRI radiomics 

model [84]. Non-invasive genotype prediction of 

chromosome 1p/19q co-deletion in lower-grade gliomas 

[81] was examined in a retrospective study (277 patients 

histopathologically diagnosed with Lower-Grade 

Glioma (LGG)) that included clinical parameters and 

employed radiomics analysis by extracting 647 MRI-

based features using random forest algorithm to generate 

a radiomics signature for predicting 1p/19q co-deletion 

in the training cohort (n = 184). A combined model, 

incorporating both the radiomics signature and related 

clinical factors, was also generated. The radiomics 

model was highly effective with AUCs of 0.887 and 

0.760 for training and testing respectively, and it 

outperformed the clinical model with equally excellent 

results obtained for the combined model (AUCs 0.885 

and 0.753 on training and validation cohorts 

respectively)[81]. In this study, clinical factors did not 

provide additional improvement for the prediction. 

Another study by Kha et al. examined a model based on 

data extracted from The Cancer Imaging Archive 

(TCIA), including 159 LGG patients with 1p/19q co-

deletion mutation status and XGBoost as the baseline 

algorithm combined with SHapley Additive 

exPlanations (SHAP) analysis and selected the seven 

most optimal radiomics features to build the final 

predictive model which achieved accuracy of 87% and 

82.8% on the training set and external test set, 

respectively [82]. Scenarios of highly curated data sets 
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of more homogenous molecular and histological 

classification as exemplified by H3K27M mutation 

analysis in pediatric high-grade gliomas, radiomics 

applications in meningioma, and in pituitary 

neuroendocrine and sellar tumors are increasingly 

reported [24, 83, 85-90]. Wu et al. employed MRI 

radiomics and clinical features to preoperatively predict 

H3K27M mutation in pediatric high-grade gliomas 

using 9 radiomics features to construct the radiomics 

signature and showed a favorable discriminatory ability 

in training and test sets with an AUC of 0.95 and 0.92, 

respectively [83].  Ring enhancement was identified as 

an independent clinical predictor and the model had 

excellent calibration and discrimination in training and 

testing sets (AUC 0.95 and 0.90 respectively). Radiomic 

approaches have been combined with other data sets eg. 

Histopathology [91] to achieve superior results. Rathore 

et al. employed high and low-grade tumors from The 

Cancer Imaging Archive (original images acquired 

1983-2008) to extract an extensive set of engineered 

features (intensity, histogram, and texture) from 

delineated tumor regions on MRI and histopathologic 

images and used Cox proportional hazard regression and 

SVM models to  MRI features only, histopathologic 

features only and combined MRI and histopathologic 

features and found that the combined model had higher 

accuracy in predicting OS as compared to either model 

in isolation (AUC 0.86) [91].  Ultimately, traditional 

ML-based methods do depend on several aspects 

including segmentation which does introduce both a 

component of workload as well as bias since the 

segmentation itself and the methods involved do dictate 

the signal that is eventually measured and interpreted 

[19, 30, 38, 48]. It should also be noted that in the 

context of central nervous system tumors and other 

cancers treated with radiation therapy, the tumor 

volumes themselves are manually delineated to allow for 

targeting of the tumor with radiation therapy. A 

connection between segmentation and oncologic 

management that has led to a number of avenues 

exploring auto-segmentation to improve reproducibility 

and increase efficiency in the clinic [23, 92, 93].  Hand 

crafted methods and traditional radiomic continue to co-

exist with DL, discussed next however they both suffer 

from several limitations and are undergoing active 

evolution [33].  

 

3.3. Deep learning-based methods 

In deep learning, image features can be “learned” 

implicitly through the iterative process of optimizing 

prediction performance/accuracy (Figure 4B) [94, 95]. 

While DL approaches take images as input without the 

need to reduce them to a predefined, expert-curated list 

of attributes, hence potentially mitigating human bias, 

they can suffer from difficulties with respect to clinical 

applicability of conclusions and require large data sets. 

The data sets that are employed may themselves 

represent a source of bias since they are originating from 

a few select institutions. The bias inherent in these sets 

relates to image acquisition but also to the patient and 

clinical features that may be embedded in the selection 

of the data set itself.  DL has been employed in 

segmentation tasks [46, 52], organ and lesion detection 

[4], lesion, tissue and tumor classification tasks [4, 53, 

96], diagnosis [4], prognosis, staging and outcome 

prediction [4, 30, 46, 71, 78, 97, 98], image registration 

and quality assurance [4].  Segmentation is arguably the 

task that has been explored the most [34]. CNN typically 

employs three major techniques to medical image 

classification: training the CNN from scratch, using off-

the-shelf pre-trained CNN features, and conducting 

unsupervised CNN pre-training with supervised fine-
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tuning [71]. A classification task of significant 

importance in central nervous system tumors is 

molecular subtyping such as in the context of diffuse 

glioma.  Li et al employed preoperative multiparametric 

MRI in 1016 diffuse glioma patients randomly divided 

into the training (n = 780) and validation (n = 236) and 

generated predictive models based on radiomics and 

DCNN finding that while both the radiomics and DCNN 

models could preoperatively predict the molecular 

subtypes of diffuse gliomas, the DL model performed 

better in most circumstances with AUCs of the DCNN 

models (0.85-0.89) [99]. The authors however also 

noted that the correlation between the radiomics features 

and DCNN features was low. The interplay between 

imaging and molecular characterization has also been 

explored using DL. Yogananda et al. employed brain 

MR imaging and corresponding genomic information 

from 247 subjects from The Cancer Imaging Archive 

and The Cancer Genome Atlas of which 163 had a 

methylated MGMT promoter and developed a T2WI-

only network (MGMT-net) to determine MGMT 

promoter methylation status and simultaneous single-

label tumor segmentation [77]. The network was trained 

using 3D-dense-UNets and demonstrated high 

classification accuracy in predicting MGMT promoter 

methylation status using only T2WI with the predictive 

ability for predicting MGMT methylation status with a 

sensitivity and specificity of 96.31% and 91.66% 

respectively and AUC of 0.93 [77]. In a separate study, a 

similar analysis was carried out for IDH mutation status 

reporting a sensitivity of 0.97, specificity of 0.98 and an 

AUC of 0.98[100]. DL-based methods are growing in 

scope and importance in imaging analysis for central 

nervous system tumors in particular with respect to 

diagnosis and classification reflecting the complexity 

and evolving understanding of molecular 

characterization of central nervous system tumors and 

the inability to label large-scale molecular data by 

human experts [19, 22, 25].  

 

 

 

Figure 4: A) Traditional machine learning: Decision tree, Random Forest (RF) and Non-linear Support Vector (SVM) 

[69, 70]. B) Deep learning in medical image processing - Convolutional layers and pooling layers are typically combined 

in an alternating manner to construct convolutional neural networks (CNNs) [94, 95]. 
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3.4. Hybrid approaches 

In an effort to optimize the results of AI-driven analyses, 

hybrid models have increasingly been developed to 

harness the advantages of both ML and DL approaches 

[88]. Hybrid approaches can involve all or a combin-

ation of the steps, where each step involves a distinct 

ML/DL training and validation process, in the imaging 

analysis workflow (Figure 1). Preprocessing can involve 

both ML and DL methods and segmentation has for 

some time been approached with hybrid methods that 

can start out with manual and/or and ML and then 

progress to auto segmentation, the product of which is 

then employed towards further data analysis and clinical 

conclusions. Fu et al. used 4 pre-operative MRI images 

of 285 patients with glioma (210 GBM, 75 LGG) and 

manually drawn tumor contours to train and validate a 3-

dimensional CNN and then applied the trained  CNN to 

the remaining 163 patients with GBM to generate their 

auto segmented tumor contours[34]. Both handcrafted 

and DL-based radiomic features were extracted from the 

autosegmented contours using explicitly designed 

algorithms and the pre-trained CNN respectively and 

cox regression models were trained to construct the 

handcrafted and DL-based signatures. The CNN 

achieved a mean Dice coefficient of 0.86 as compared to 

the handcrafted signature (0.64) and the DL-based (0.67) 

however the DL-based signature successfully stratified 

testing patients into 2 prognostically distinct groups 

[34]. Ning et al. also analyzed the feasibility of 

integrating global radiomics and local deep features 

based on MRI to create a grading model [101].  567 

patients who had undergone postcontrast enhanced T1-

weighted and T2 FLAIR MRI (211 patients with 

glioblastomas (GBMs) and 356 patients with low-grade 

gliomas (LGGs)) were included and radiomics and deep 

features were extracted. The model based on the 

combination of radiomics and deep features 

outperformed the models based only on either radiomics 

or deep features (AUC 0.94 and 0.88 for the validation 

and the independent testing cohort respectively) [101]. It 

is also increasingly becoming clear that CNN may 

extract drastically different features than radiomics 

models [102]. Limitations that are recognized include 

the selection of tumor imaging volumes selected for 

CNN (eg. 2.5D input format with skipped slices, vs 3D 

tumor volume for radiomics input) [99,102]potentially 

resulting in biased feature comparisons and therefore 

biased feature correlations between radiomics and DL.  

 

A special category is a hybrid approach of combining 

ML and DL in imaging analysis with clinical 

information. Results in this space have been mixed. Guo 

et al. aimed to explore whether multiparametric MRI-

based radiomics combined with selected blood 

inflammatory markers could effectively predict the 

grade and proliferation in glioma patients and found that 

the radiomics signature demonstrated good performance 

in both the training and validation cohorts, with AUCs 

of 0.92, 0.91, and 0.94 and 0.94, 0.75, and 0.82 for 

differentiating between low and high-grade gliomas, 

grade III and grade IV gliomas, and low Ki-67 and high 

Ki-67, respectively, all better than the clinical model 

[103]. The AUCs of the combined model were 0.93, 

0.91, and 0.95 and 0.94, 0.76, and 0.80, respectively, 

and ultimately both the radiomics signature and 

combined model outperformed the clinical model. 

Interestingly, although the clinical factors did not 

improve the prediction of the grade and proliferation 

index, the stability of the model was improved. By 

comparison, Wang et al. used a training cohort of 168 
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HGG patients and a validation cohort of 42 HGG 

patients extracting 1284 radiomics features and 8192 

deep features (extracted via transfer learning) using  

Least Absolute Shrinkage and Selection Operator 

(LASSO) regression to select features, and integrating 

this with clinical predictors, found that the radiomics 

and deep signatures were significantly associated with 

HGG patients' survival time and the signature derived 

from the synthesized radiomics and deep features 

showed a better prognostic performance than either the 

radiomics or deep features alone [104]. 

 

These studies raise the question of the variability of 

clinical data collection and the extent and type of 

clinical information being included that is necessary to 

improve model pred-iction beyond image-based analysis 

and the importance of feature extraction methods. With 

respect to survival prediction and potential hybrid 

methods that combine it with image analysis, DeepSurv, 

a DL based-survival prediction algorithm, has already 

been successfully employed in oncologic settings (oral 

cancer [105], renal cell [106]) and may be combined 

with ML and DL approaches that harness imaging 

information in central nervous system tumors. Survival 

prediction is an active area of research that will require 

multiple data inputs to be successful and imaging 

analysis will be a paramount source of data in this area 

[39].  

 

4. Conclusions 

Significant variability persists in AI-driven imaging 

analysis at all levels of the workflow all of which are 

subject of ongoing research resulting in a significant 

number of publications. ML, DL, and hybrid approaches 

coexist, and their combination may produce superior 

results although data in this space is as yet novel, and 

conclusions and pitfalls have yet to be fully explored. 

There is a growing technical aspect that may become 

increasingly separated from the clinic and hence 

clinician involvement is much needed to guide progress 

and ensure that conclusions derived from AI-driven 

imaging analysis approaches reflect that same level of 

scrutiny lent to other avenues of clinical research. 
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