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Abstract
The review delves into the methods for the quantitative assessment 

of intracellular effectors and cellular response of Receptor for 
Advanced Glycation End products (RAGE), a vital transmembrane 
receptor involved in a range of physiological and pathological 
processes. RAGE bind to Advanced Glycation End products (AGEs) 
and other ligands, which in turn activate diverse downstream signaling 
pathways that impact cellular responses such as inflammation, 
oxidative stress, and immune reactions. The review article discusses 
the intracellular signaling pathways activated by RAGE followed by 
differential activation of RAGE signaling across various diseases. This 
will ultimately guide researchers in developing targeted and effective 
interventions for diseases associated with RAGE activation. Further, 
we have discussed how PCR, western blotting, and microscopic 
examination of various molecules involved in downstream signaling 
can be leveraged to monitor, diagnose, and explore diseases involving 
proteins with unique post-translational modifications. This review 
article underscores the pressing need for advancements in molecular 
approaches for disease detection and management involving RAGE.
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Abbreviations: 
RAGE: Receptor for Advanced Glycation Endproducts; AGE: 

Advanced Glycation Endproducts; ENRAGE: Elevated RAGE; SRAGE: 
Serum RAGE; MAPK: Mitogen-activated protein kinases; ERK: 
Extracellular signal-regulated kinase; PI3K: Phosphoinositide 3-kinases; 
Akt: protein kinase B; JAK: Janus kinase: STAT: Signal Transducer 
and Activator of Transcription3; NF-κB: Nuclear factor kappa-light-
chain-enhancer of activated B cells; HMGB1: High mobility group box 
1; LPA: Lipoprotein, Aβ: Amyloid beta peptide; API: Activator protein 
1; NADPH: Nicotinamide adenine dinucleotide phosphate; PTM: Post-
translational modifications; TRP: Transient receptor potential; CaMK: 
Calmodulin-dependent protein kinase; IP3: Inositol trisphosphate; PLC: 
Phospholipase C; CREB: cAMP Response Element-Binding; ROS: 
Reactive Oxygen Species; DCFH-DA: 2',7'-dichlorodihydrofluorescein 
diacetate; DHE: Dihydroethidium; TNF-α: Tumor necrosis factor alpha; 
IL6: Interleukin 6; IL4: Interleukin 6; MCP1: Monocyte Chemoattractant 
Protein-1; IFN-γ: Interferon-gamma; TGF-β: Transforming Growth 
Factor-beta; ELISA: enzyme-linked immunosorbent assay; MPTP: 
mitochondrial permeability transition pore.
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Introduction
RAGE is a transmembrane receptor in the immunoglobulin 

superfamily that plays a crucial role in physiological and 
pathological processes by recognizing and binding to 
advanced glycation end products (AGEs) and other ligands 
[1] Structurally, it has three parts: an extracellular domain for 
ligand recognition, a transmembrane domain anchoring the 
receptor in the cell membrane, and an intracellular domain 
for initiating signaling cascades upon ligand binding [2, 3]. 
RAGE is expressed on the surface of various cell types, 
including endothelial cells [4], immune cells [5, 6], and 
neurons [7]. Its primary function is to mediate the effects of 
AGEs formed during non-enzymatic glycation of proteins and 
lipids [8, 9]. Upon ligand binding, RAGE activates various 
downstream signaling pathways and contribute to cellular 
responses including inflammation [10], oxidative stress [11-
13], and immune reactions. 

Overview of major intracellular signaling 
cascades activated by RAGE and its clinical 
implications

RAGE, a crucial protein in cell signaling pathways, is 
involved in complex interactions with other cell surface 
receptors, playing a vital role in cellular responses and protein 
expression (Figure 1). RAGE activation triggers major 
intracellular signaling pathways, including the Mitogen-
activated protein kinases/Extracellular signal-regulated 
kinase (MAPK/ERK) pathway [14], Phosphoinositide 
3-kinases/ protein kinase B (PI3K/Akt) pathway [15], 
Janus kinase (JAK)-signal transducer and activator of 
transcription (STAT) [16] pathway, etc. The processes 
behind RAGE activation are also influenced by its degree 
of activity. RAGE binding with its ligand phosphorylates its 
downstream MAPK [17] and activates NF-κB protein and 
it translocate to the nucleus to stimulate the production of 
inflammatory mediators through transcription contributing 
to the amplification of inflammatory signaling. RAGE-
mediated activation of  PI3K/Akt can influence cell survival 
and cellular responses [16, 18]. The Janus Kinase/Signal 
Transducer and Activator of Transcription (JAK/STAT) 
pathway regulates cell proliferation, differentiation, and 
immune responses. RAGE-induced activation of JAK/STAT 
may modulate cellular functions related to inflammation 
and tissue repair [16]. RAGE activation is associated 
with the generation of reactive oxygen species (ROS), 
which contribute to oxidative stress and cellular damage 
(Figure 2). RAGE-induced modulation of Rho GTPases 
can influence cytoskeletal dynamics, cell migration, and 
adhesion, contributing to cellular responses involved in 
tissue remodeling and inflammation [19].

Figure 1:  RAGE signaling :  RAGE interacts with ligands such 
as  Advanced Glycation End-Products (AGEs), High mobility 
group box 1 (HMGB1), S100 proteins, Lipoprotein (LPA), 
Amyloid beta peptide (Aβ), etc to initiate signaling cascades that 
in turn stimulate Signal transducer and activator of transcription 
3 (STAT3), Activator protein 1 (AP-1) , Nuclear factor kappa B 
(NF-κB), and other intracellular transcription factors and activate 
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 
Phosphoinositide 3-kinases/ protein kinase B (PI3K/AKT), 
Mitogen-activated protein kinase/ Extracellular signal-regulated 
kinase (MEK/ERK), c-Jun N-terminal kinases /Signal Transducer 
and Activator of Transcription (JNK/STAT), and Janus Kinase/
Signal Transducer and Activator of Transcription (JAK/STAT)  
pathways. This leads to increased secretion of proinflammatory 
cytokines which in turn alters cellular activities such as oxidative 
stress, proliferation, migration, and cell death expression.   RAGE 
primes the cumulative effects of these mediators, leading to chronic 
inflammation.

Quantitative assessment techniques for 
measuring RAGE activation in various 
inflammation

RAGE is widely expressed and linked to a variety 
of inflammatory-related clinical conditions, including 
diabetes [50] , cancer [15, 51], vascular disease [52, 53], 
and neurodegeneration [54]. (Figure 2). Many intracellular 
signaling molecules, including MAP kinases [55], adhesion 
molecules [56], and transcription factors like NF-κB, 
Egr-1, AP-1, and STAT3 [57], are activated in response 
to RAGE activation. The specific downstream effects 
of RAGE activation can vary depending on the ligand-
receptor interaction. For instance, RAGE activation by Aβ is 
particularly implicated in neuroinflammation and Alzheimer's 
disease, while AGEs may have broader implications in various 
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Figure 2: Pathophysiology of RAGE activation in human: Oxidative stress, angiogenesis, 
proliferation, inflammation, or migration are common mechanisms by which RAGEs are linked 
to the prevalence of several diseases.

Molecular 
mechanism Pathology Disease/clinical condition

Oxidative stress Neurological 
Inflammation

Alzheimer's Disease- Increased inflammation and oxidative stress [20]
Parkinson's Disease – Increased neuronal damage[21]   
Stroke - Inflammatory  and neuronal injury[22]
Multiple Sclerosis (MS) - Demyelination and axonal damage[23] 
Amyotrophic Lateral Sclerosis  - Neuroinflammation and motor neuron degeneration[24].
Diabetic Neuropathy - Nerve damage and  sensory deficits[25]

Angiogenesis
Pulmonary 
Disorders

Chronic Obstructive Pulmonary Disease  - recruitment of inflammatory cells and the destruction of 
lung tissue[3]
Asthma -  Increased airway inflammation, mucus production, and airway hyper responsiveness[26]
Pneumonia - Increased recruitment of immune cells and the release of pro-inflammatory 
cytokines[27]
Acute lung injury – Increased inflammatory response and endothelial dysfunction[28].
Pulmonary hypertension – Increased vascular remodeling and inflammation in the pulmonary 
arteries[29].
Lung cancer - Activate signaling pathways that enhance cancer cell survival, proliferation, and 
invasiveness[30].

Proliferation
Cardiovascular 
Diseases

Atherosclerosis – Increased inflammatory responses and the recruitment of immune cells to the 
arterial wall.Plaque formation and destabilize atherosclerotic lesions[31]
Cardiac fibrosis – Contribute to increase deposition of extracellular matrix proteins in the heart tissue
Hypertension - Contribute to vascular dysfunction and remodeling, leading to increased blood 
pressure[32].
Diabetic Cardiovascular Complications[33]
Vascular Calcification –Increased calcium deposits accumulation in the arterial walls[33, 34]. 
Myocardial Infarction - Contribute to the progression of heart failure by impairing cardiac function[31].

Table 1: Function of RAGE in different clinical conditions
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inflammatory conditions [58]. Through their interaction with 
RAGE, ligands including AGE, HMGB1, and S100s cause 
endothelial dysfunction, inflammation, oxidative stress, 
increased vascular permeability, and aberrant angiogenesis, 
which in turn lead to vascular disturbances.  RAGE causes 
cellular activation in diabetic vasculature due to an increased 
expression of RAGE and its ligands. Ann Marie Schmidt 
developed a "two-hit" model for RAGE-mediated alteration 
of cellular characteristics in diabetes vasculature. According 
to this model, the diabetic vascular wall exhibits elevated 
expression of both the receptor (first hit) and RAGE ligands. 
When a second hit—such as ischemia stress, immunological 
or inflammatory stimuli, physical stress, or changed 
lipoproteins—occurs, the body's reaction is heightened, 
which leads to the development of vascular lesions rather 
than the restoration of vascular homeostasis [59]. In a 
number of clinical situations, such as diabetes [60], chronic 
inflammation and malignancies [61], and neurodegenerative 
diseases [62], RAGE is linked to enhanced host responses 
such as second hit. The clinical implications of RAGE are 
listed in Table 1

The gene and protein expression of the signaling molecules 
in  downstream signaling and the downstream effectors of 
RAGE such as NF-κB [63] , STAT3 [63], AP1 [64] and Erg 
1[10]  may be investigated using a variety of conventional 
techniques including ELISA, RT-PCR, Western blotting, and 
immunostaining, however, there are limitations  and will be 
discussed in sections below. Western Blotting, particularly, 
fluorescent multiplex analysis using western blotting 
allows the detection and quantification of RAGE protein in 
inflammatory responses by detecting alterations in RAGE 

protein levels and post-translational modifications (PTMs) 
[65]. Particularly during inflammatory events, PTMs are 
essential for controlling the activity and function of a protein 
[66] RAGE endures post translational modifications such 
as phosphorylation [67], glycosylation [68], ubiquitination 
[69], sumoylation  [70], acetylation [71], nitrosylation [72], 
palmitoylation [73], O-GlcNAcylation [74], and proteolytic 
cleavage [71] during inflammatory events . These changes 
are crucial targets for therapeutics meant to modulate RAGE 
activity because they add to the dynamic character of RAGE 
signaling and its participation in several inflammatory 
diseases. 

Accurately quantifying and comparing expression levels 
might be difficult because of the isoforms of RAGE such as 
soluble versions (sRAGE) and membrane-bound full-length 
RAGE. These isoforms must be considered when studying 
RAGE expression using various techniques. It might be 
difficult to find and use species specific antibodies that are 
specific for identifying RAGE and its isoforms. Thorough 
antibody validation is necessary to provide accurate findings. 
Distinct tissues and cell types may have distinct factors 
regulating the expression of RAGE [75]. Inflammation and 
oxidative stress are two pathogenic factors that cause dynamic 
regulation of RAGE expression [76]. This suggests that 
ligand mediated RAGE activation may activate downstream 
signaling differently in each pathological condition to have 
its effects at the molecular and cellular level. This differential 
expression of these downstream mediators and the extent of 
RAGE expression should be assessed in different pathogenic 
conditions using precisely designed investigating techniques. 
RAGE-ligand interaction activate intracellular signaling 

RAGE expression
Digestive 
diseases

Inflammatory Bowel Disease (IBD) - Contribute to the inflammatory response and tissue damage in 
the gut[35].
Gastric Cancer - Promote tumor growth and metastasis in gastric cancer[36].
Liver cancer – Increased inflammation and fibrosis in the liver.
Pancreatitis - Involved in acute and chronic pancreatitis[37]
Colorectal Cancer- Associated with increased  tumor progression and invasion in the colon[38]

Inflammation

Diabetic and 
metabolic 
diseases

Type 2 Diabetes - Contributes to insulin resistance and the development of diabetic complications[39, 
40]
Insulin Resistance - Impair insulin signaling pathways, contributing to reduced glucose uptake by 
cells[41].
Obesity – Increased expression in adipose tissue lead to increased chronic inflammation and insulin 
resistance[42].
Non-Alcoholic Fatty Liver Disease (NAFLD) - Contributes to inflammation, fibrosis, and the 
progression of NAFLD[43]
Dyslipidemia and hypertension -  Interact with oxidized lipids and induces oxidative modifications[31].

Migration
Urological 
Disorders

Diabetic Nephropathy -  Recruitment of immune cells, endothelial dysfunction, and increased 
permeability of  the glomerular filtration barrier and contributing to proteinuria and kidney damage[44, 
45]
Acute kidney injury - Contribute to inflammation and cell death on acute kidney injury[46]
Prostate cancer - Increased cell proliferation and survival in cancer cells[47]
Bladder cancer - Play a role in tumor invasion and metastasis, influencing processes such as 
epithelial- mesenchymal transition (EMT) and interactions with the extracellular matrix[48].
Hypertensive nephropathy – Increased deposition of extracellular matrix proteins and fibrosis in the 
renal tissue[49]
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including NADPH oxidase, PI3K/AKT, MEK/ERK, SAPK/
JNK, and JAK/STAT and transcription factors like NF-κB, 
Egr-1, AP-1, and STAT3. An increased RAGE expression 
results in modifications in the expression of proteins and 
changes in cellular processes, such as inflammation, oxidative 
stress, angiogenesis, proliferation, and migration.

Quantifications of post translational medications 
Immunoblotting allows for the simultaneous detection 

of multiple protein expressions occurring during PTMs, 
providing a comprehensive view of post-translational 
landscape of various proteins [77]. It is versatile and 
allow it to be applied to various samples and distinguish 
different isoforms or variants of a protein. Nevertheless, 
immunoblotting is regarded as semi quantitative, and other 
methods could be needed for exact quantification. The quality 
and specificity of the antibodies used determine how specific 
the results are, and cross-reactivity with other nonspecific 
proteins may happen. Particularly for proteins with very 
close molecular weights or its isoforms, immunoblotting may 
have low specificity, making it challenging to discern minute 
alterations [78].

For increased specificity, precision, and repeatability, 
immunoblotting assays for various proteins can be improved 
by implementing modern multiplexing technologies, 
automation, quantitative methodologies, optimal sample 
preparation, and thorough antibody validation [79]. Such 
methods can be integrated with automated procedures, 
digital imaging, densitometry analysis, and better resolution 
techniques [80]. The post-translational modification proteins 
of RAGE can influence its ability to bind various ligands, 
including advanced glycation end-products (AGEs) [71], 
high-mobility group box 1 (HMGB1)[81], and S100 proteins 
[71]. 

Differential gene expression analysis of RAGE and 
its downstream effectors

The molecular processes behind the activation and activity 
of RAGE and its effector proteins can be understood through 
delineating changing gene expression during pathogenesis of 
various pathological conditions. It is particularly crucial when 
it comes to disorders like diabetes, inflammation, neurological 
illnesses, and problems with the cardiovascular system. Gene 
expression studies, particularly those using high-throughput 
techniques like RNA-seq, provide a comprehensive analysis 
of the entire transcriptome [82]. Transcriptomic analysis 
will also help in revealing how gene expression patterns of 
various molecules in downstream signaling of RAGE change 
over time in response to RAGE activation. This information 
is crucial for understanding dynamic biological processes 
and correlating gene expression data with other omics (e.g., 
proteomics) for a more comprehensive understanding will be 
useful in developing novel therapeutics. 

Drawbacks of gene expression analysis 

In some way, understanding the gene expression profiles 
of RAGE and its effectors can help identify potential 
therapeutic targets, aiding in the development of intervention 
strategies to modulate RAGE-associated pathologies. Gene 
expression studies also contribute to understanding inter-
individual variability [83] in RAGE-related responses, 
advancing personalized medicine approaches and aiding 
in the early detection and prediction of disease outcomes. 
Thus, RAGE-related genes can be used for targeted drug 
development and optimization. However, there are various 
challenges in gene expression analysis. RNA-sequencing 
can been used to identify genes that are differently expressed 
upon RAGE activation both in vitro and in vivo. Through 
the analysis of transcription factors and pathways regulated 
in the presence of RAGE activation, the RNA-seq data offer 
an insights into potential strategies of suppressing RAGE-
mediated inflammation [84]. 

 RNA sequencing does not give single nucleotide 
polymorphisms (SNPs)[85] or the profile of gene expression 
from introns; it only provides information from exons [86]. 
Particularly in samples with low RNA content or complicated 
gene expression patterns, it might overlook uncommon 
splice variants or low abundance transcripts, restricting 
the transcriptome ability to be thoroughly analyzed [87]. 
Furthermore, precise transcript isoform modeling and 
quantification from RNA-seq data can be difficult, especially 
in areas with complicated gene structures [88], alternative 
splicing processes [89], or transcript overlap [90]. Because 
RNA-seq only captures a snapshot of gene expression at a 
particular moment in time, it is not able to record dynamic 
changes in regulatory mechanisms or gene expression 
across time or in response to external stimuli [91]. Recent 
developments in single-cell and single-molecule imaging 
technologies have allowed us to resolve biological processes 
in space and time that are essential for comprehending 
how genes are expressed [92]. Highly dynamic elements 
of transcriptional and post-transcriptional regulation in 
eukaryotic cells have been discovered by observations of 
single-molecule processes in their cellular environment. 
Using this method, transcription may be linked to the amount 
and lifespan of mRNA [92].  

Other drawbacks could include the requirement for 
standardized RNA sizes, the standard size selection of RNA-
Seq libraries making small transcripts more challenging to 
count, the possibility of transcript overlap between two 
different genes, and the potential for transcript-length bias 
resulting from RNA-Seq multiple fragmentation and cDNA 
or RNA size-selection steps[82]. ATAC-seq, a sensitive 
method with the ability to map open chromatin in a small 
number of cells, when integrates with RNA-seq elucidate 
more specific gene regulation involved in the pathogenesis. 
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Identifying open chromatin regions via ATAC-seq unveils 
potential regulatory elements like enhancers. RNA-seq 
complements by quantifying active gene expression levels. 
This integration links accessible chromatin with transcribed 
genes, highlighting regulatory mechanisms. Notably, when 
active genes align with accessible chromatin, it suggests 
regulatory element presence, influencing gene expression. 
Thus, ATAC-seq/RNA-seq synergy unveils the intricate 
relationship between chromatin accessibility, regulatory 
elements, and gene expression. However, utilizing RNA 
sequencing for gene expression studies presents a number of 
difficulties. The approach is skewed towards polyadenylated 
transcripts, potentially excluding non-polyadenylated RNAs 
including microRNAs, long noncoding RNAs (lncRNAs), 
and circular RNAs, which demand the use of specific library 
preparation techniques to identify [93]. In order to examine 
gene expression patterns at the single-cell or subcellular level, 
conventional RNA-seq approaches lack the spatial resolution 
necessary to yield bulk transcriptome measurements, 
which average gene expression over whole tissues or cell 
populations.

Importance of intracellular calcium dynamics 
quantifications on RAGE activation

Activation of RAGE can modify calcium signaling via 
several methods, which can change cellular responses and play 
a role in the development of several diseases. Extracellular 
calcium influx is promoted by the binding of RAGE to its 
ligands, such as S100 proteins, through a variety of calcium-
permeable ion channels, including transient receptor potential 
(TRP) channels [94]. RAGE activation raises intracellular 
calcium levels, which in turn affects the activity of calcium-
dependent signaling pathways, including calcineurin-nuclear 
factor of activated T cells (NFAT) and calmodulin-dependent 
protein kinase (CaMK) [95]. When RAGE is activated, 
these pathways can control gene expression, cell division, 
apoptosis, and inflammation [96]. Quantitative measurement 
of intracellular calcium dynamics using fluorescent indicators 
provides valuable insights into the role of RAGE in calcium 
signaling and associated cellular responses. By enabling 
the quantitative assessment of calcium kinetics, they make 
it possible to compare different cell types or experimental 
conditions. When examining RAGE activation in various 
biological conditions, fluorescent indicators are a flexible 
tool that provide insights into cellular variety by seeing the 
variation in calcium responses across individual cells. 

β-amyloid [72], pathological oxidation protein products 
[73], and advanced glycation end products all activate the 
signal receptor RAGE [74] and leads to the activation of 
various protein kinases like phospholipase C (PLC) [97]. 
When the PLC is activated, inositol trisphosphate (IP3) 
is produced [98]. When IP3 binds to IP3 receptors on the 
endoplasmic reticulum (ER), calcium ions are released into 

the cytoplasm [99]. On the plasma membrane of neurons and 
astrocytes, RAGE activation can also result in the activation 
of calcium-permeable ion channels, such as transient 
receptor potential (TRP) channels [100]. Gliotransmitters 
like glutamate are released exocytotically from presynaptic 
terminals of neurons when intracellular calcium levels 
rise. Glutamate causes synaptic transmission and neuronal 
excitability via binding to postsynaptic receptors [100]. This 
particular pathway plays a role in the communication between 
neurons and astrocytes in both physiology and disease 
[101]. Fluorescent markers such as Fluo-4 AM or Fura-2 
AM, can be used to quantitatively assess the intracellular 
calcium dynamics upon RAGE activation by specific RAGE 
ligand like AGEs or S100 proteins [102]. RAGE can trigger 
intracellular signaling cascades, such as calcium signaling, 
by attaching itself to S100 proteins. The interaction between 
S100 proteins and RAGE can cause calcium to enter the 
cytoplasm via activating calcium channels or releasing 
calcium from intracellular reserves, among other ways [103]. 
S100 proteins are calcium-binding proteins [104].  Elevated 
calcium levels in the cytoplasm initiate subsequent signaling 
pathways, which involve the initiation of calcium-dependent 
enzymes like Calcineurin, Phospholipase C (PLC) and 
Protein kinase C (PKC), protein kinases such as MAPK, 
JNK, Akt etc, and transcription factors like NFKB, STAT3, 
AP1 etc [105]. Numerous biological functions, including as 
gene expression, cell division, proliferation, migration, and 
apoptosis, are regulated by these signaling pathways.

Altered calcium levels can provoke significant pathological 
consequences across multiple bodily systems[106]. 
Hypocalcemia, characterized by low calcium levels, can 
trigger muscle tetany [107], neurological disturbances 
like seizures[108], cardiac arrhythmias[109], and bone 
demineralization [107]. Reduced calcium availability 
compromises conduction, excitability, and contractility in 
cardiac cells, leading to arrhythmias. Prolonged QT intervals 
increase the risk of dangerous ventricular arrhythmias [110]. 
These disturbances in electrical activity pose significant 
risks in cardiovascular diseases, potentially culminating 
in life-threatening events. Conversely, hypercalcemia, 
elevated calcium levels, may induce muscle weakness [111], 
kidney diseases [112], cognitive impairment [113], and 
cardiovascular complications including arterial calcification 
[114]. Elevated calcium levels impair endothelial function 
[115], induce smooth muscle cell differentiation into 
calcifying cells [116], trigger matrix vesicle formation [117], 
exacerbate inflammation, and inhibit vascular calcification 
inhibitors. Increased intracellular calcium levels triggered 
by inflammatory mediators lead to adherent junction 
disassembly, cytoskeletal rearrangements, and increased 
permeability. Additionally, calcium signaling facilitates 
leukocyte-endothelial interactions, including rolling, 
adhesion, and transendothelial migration during inflammation 
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[115]. Smooth muscle cell differentiation into calcifying 
cell is a crucial event in vascular calcification associated 
with atherosclerosis. Increased intracellular calcium levels, 
triggered by osteogenic stimuli, promote osteogenic gene 
expression and matrix calcification [116]. Elevated calcium 
levels stimulate vesicle release from vascular smooth 
muscle cells, leading to calcium phosphate deposition and 
hydroxyapatite crystal formation. Matrix vesicle formation 
promotes vascular calcification, plays a potential role in 
the progression of CVD [117]. These mechanisms promote 
calcium deposition in arterial walls, contributing to 
atherosclerosis, arterial stiffness, and increased CVD risk. In 
neurodegenerative diseases like Alzheimer's, dysregulated 
calcium signaling contributes to neuronal dysfunction and 
degeneration. Moreover, calcium imbalances underlie 
conditions such as osteoporosis, where diminished bone 
density increases fracture risk. These disruptions also reflect 
calcium's pivotal role in muscle contraction, neurotransmitter 
release, cell signaling, and bone integrity. Understanding the 
intricate interplay between calcium levels and pathological 
outcomes underscores the necessity for precise calcium 
homeostasis maintenance to safeguard overall physiological 
function and prevent the onset of various diseases. It is 
possible to record and analyze variations in intracellular 
calcium levels by using a fluorescence microscope to see the 
florescence emission of calcium indicator. It is essential to 
conduct studies using calcium chelators, such as ethylene 
glycol tetra acetic acid, in order to verify if the observed 
changes in fluorescence are dependent on calcium [118]. It 
makes it possible to track intracellular calcium dynamics 
in real-time. With the ability to resolve changes in calcium 
inside individual cellular compartments spatially, fluorescent 
calcium indicators provide a dependable way to measure 
intracellular calcium levels [119].

Different domains of the extracellular component of 
RAGE are interacting with RAGE ligands, such as S100 
proteins such as S100A8, S100A9, and S100B, to have 
different biological effects. S100A2 exhibited severe calcium 
dependence and a micromolar affinity for RAGE in vitro. 
Additionally, S100A2 interacts with the receptor's V-domain, 
and its binding to GST-RAGE is only possible in the presence 
of calcium [120].  Cardiovascular disorders including 
hypertension and atherosclerosis are characterized by 
endothelial dysfunction and vascular inflammation, which are 
exacerbated by S100A8-RAGE-mediated calcium signaling 
[121] . Neuroinflammatory processes and neurodegenerative 
disorders like Alzheimer's disease are linked to aberrant 
calcium signaling that is triggered by RAGE-S100A9 
interactions [122]. Excitotoxicity, mitochondrial malfunction, 
and synaptic impairment are some of the effects of calcium 
influx into neurons that can cause harm to neurons and 
ultimately result in cell death [122].In several cancer types, 
RAGE-S100B-induced calcium signaling promotes tumor 

development and metastasis [123]. Invasion, migration, 
resistance to apoptosis, and proliferation of cancer cells are 
all accelerated by calcium entry, which aids in the growth of 
tumors [123]. Poor prognosis, metastatic dissemination, and 
aggressive tumor characteristics are linked to RAGE-S100B-
induced calcium signaling.

Drawbacks and limitations with quantitative intracellular 
calcium dynamics measurement

Although it makes it possible to monitor intracellular 
calcium dynamics in real time, there are a few drawbacks 
and difficulties in quantitatively measuring intracellular 
calcium dynamics. The number of fluorescent markers that 
are loaded into cells varies depending on the cell density and 
dye loading parameters. High-affinity dyes may alter cellular 
activity through their cytotoxic effects [119]. Dye may cause 
artifacts or interfere with biological processes, and real-time 
information may be restricted [124]. To be confident that 
fluorescence variations are connected to calcium dynamics, 
careful confirmation is required.  Because calcium ions 
function as second messengers in a variety of physiological 
activities and are involved in several signaling pathways, 
fluorescence changes are linked to calcium dynamics. The 
amount of calcium ions in a cell could be measured using 
calcium-sensitive dyes, which offers important insights into 
the dynamics of calcium [125]. 

Single-cell resolution has its benefits, but there may also 
be a drawback when examining tissues or intricate cellular 
networks where calcium signaling may be influenced 
by connections between cells [126]. The limitations of 
quantitative intracellular calcium dynamics measurement 
are signal saturation, dye leakage, photobleaching, and 
background fluorescence, as well as spatial heterogeneity 
within cells. These limitations can be mitigated by using 
membrane-permeant acetoxymethyl (AM) ester forms of 
calcium dyes to reduce dye leakage, optimizing dye loading 
protocols and minimizing dye exposure time, and diluting 
the calcium-sensitive dye or using lower dye concentrations. 
Additionally, using ratiometric dyes can provide a more 
reliable indicator of calcium concentration. To reduce 
photobleaching, lower excitation intensities, shorter 
acquisition times, and intermittent illumination protocols 
can be used [127]. To overcome spatial heterogeneity, 
high-resolution microscopy techniques can be used to 
provide spatial information on calcium dynamics within 
subcellular compartments. Complementary approaches such 
as ratiometric imaging, high-resolution microscopy, and 
advanced image analysis techniques can provide valuable 
insights into intracellular calcium dynamics with improved 
spatial and temporal resolution [128].

RAGE: Intracellular calcium signaling and increased 
oxidative stress.

Intracellular calcium levels rise as a result of signaling 
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cascades triggered by ligand (AGE/S100s) binding to RAGE 
[129]. Elevated intracellular calcium can activate calcium-
dependent signaling pathways, including those that control 
gene expression involved in various pathological conditions. 
Calcium functions as a secondary messenger in a variety of 
signaling pathways [130] and calcium signaling pathways 
have the ability to join on transcription factors that are 
involved in the transcriptional control of genes, including 
RAGE, such as CREB (cAMP Response Element-Binding) 
[131].  ChIP assay (Chromatin Immunoprecipitation assay) 
identifies target genes that are directly controlled by RAGE 
in inflammation by establishing a correlation between RAGE 
binding to particular genomic areas and changes in gene 
expression levels. Additionally, information on chromatin 
remodeling activities connected to RAGE-mediated 
transcriptional activation or repression of inflammatory genes 
such as such as NF-κB, AP-1, or STAT3, obtained using 
histone modification ChIP tests (e.g., ChIP for histone H3 
acetylation or methylation) [132].

Inflammatory diseases are frequently linked to calcium 
signaling and ROS generation [133]. The relationship 
between these mechanisms in context of RAGE expression 
could increase inflammatory reactions and contribute in the 
development of inflammatory disorders [134]. In cases of 
cellular stress, RAGE expression is elevated, and two essential 
elements of cellular stress responses are the generation of 
ROS and calcium signaling [135]. Cellular responses that 
are either maladaptive or adaptive may be influenced by the 
interactions between these systems. The production of ROS 
occurs from RAGE activation via a number of routes, such as 
the stimulation of oxidative stress pathways, mitochondrial 
malfunction, and NADPH oxidase activation [10]. ROS 
have the ability to enhance calcium signaling by promoting 
calcium inflow and release from intracellular storage, which 
occurs downstream of RAGE activation [136]. 

Functional Implications of RAGE-ROS- calcium Axis

Highly reactive chemicals known as reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) have 
a major impact on human disorders including cancer and 
cardiovascular disease [137]. ROS production and RAGE 
activation are linked, and this interaction plays a role in a 
number of cellular responses and pathological situations. 
It has been demonstrated that RAGE activation increases 
the activity of NADPH oxidase, a significant generator of 
ROS within cells [138]. Superoxide anions (O2•-) and other 
reactive oxygen species are produced when NADPH oxidase 
is activated [139]. Moreover, RAGE signaling has an impact 
on mitochondrial activity, which can raise ROS generation 
from the electron transport chain in the mitochondria [140]. 
This raises the total amounts of ROS in the cell. RAGE-
mediated production of reactive oxygen species (ROS) is 
linked to NADPH oxidase (NOX) proteins such NOX1 and 

NOX2 [141]. The regulated production of reactive oxygen 
species (ROS) in reaction to RAGE activation is caused by 
these enzymes [141]. ROS thereby activates redox-sensitive 
transcription factors, such as Nuclear Factor-κB (NF-κB) 
and Activator Protein-1 (AP-1) [62]. These transcription 
factors play crucial roles in the regulation of inflammatory 
gene expression. Thus the pathophysiology of chronic 
illnesses, such as diabetes [142], neurological disorders [62], 
cardiovascular diseases [135], and inflammatory conditions, 
is linked to the interaction between ROS and RAGE activation 
[143].

ROS measurement assays and their benefits

Understanding oxidative stress and its consequences in 
a range of biological processes and disorders requires an 
assessment of the reactive oxygen species (ROS) synthesized 
during the pathogenesis. ROS assessment will indirectly 
measure the effect of RAGE activation as well as the differential 
RAGE activity. Quantifying ROS levels can be performed in 
several ways, each having pros and cons. One such method 
is chemiluminescence assays, which uses chemiluminescent 
probe, such as luminol or lucigenin [144]. As ROS reacts 
with a chemiluminescent agent, the tests quantify the light 
released during this process. Chemiluminescence assays 
are useful tools for evaluating oxidative stress and cellular 
redox state in molecular biology because they offer distinct 
benefits over other methods for measuring reactive oxygen 
species (ROS) [145]. Chemiluminescence tests are highly 
sensitive and flexible making it possible to identify even 
low concentrations of reactive oxygen species (ROS), which 
are essential for researching alterations in oxidative stress 
in cells [146]. They enable comparisons between samples 
and experimental settings and offer precise measurement of 
ROS levels. Chemiluminescent probes provide specificity by 
allowing them to target certain ROS, such hydrogen peroxide 
or superoxide [147]. They have a high signal-to-noise ratio 
because of their minimal background signals, which makes 
them perfect for low-level noise measurements. Since 
chemiluminescent signals don't require constant excitation, 
photobleaching is limited and signal intensity is maintained. 
They also simplify experimental settings by producing light 
without the need for outside light. The various kits available 
are listed in Table 2

Reactive oxygen species (ROS) are crucial for both 
normal physiological functions and disease states in the body. 
In cellular processes such as proliferation, differentiation, and 
apoptosis, ROS play crucial functions as signaling molecules. 
Through their involvement in redox signaling pathways, 
they alter the expression of genes and transcription factors. 
They are produced by immune cells and play a crucial role 
in homeostasis, antioxidant defense, and cellular redox 
balance. Primary byproducts of mitochondrial respiration, 
ROS are involved in signaling, energy generation, and 
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Reagent Manufacturer Application Principle References

CellROX® Deep Red 
Reagent

Thermo Fisher 
Scientific

Detection of a broad 
range of ROS, including 
superoxide and hydroxyl 

radicals.

CellROX® reagents become highly fluorescent 
upon oxidation by ROS and can be detected 
using fluorescence or chemiluminescence.

[148]

DCFDA Cellular ROS 
Detection Assay Kit Abcam Measurement of general 

cellular ROS levels.

DCFDA is oxidized by ROS to form 
the fluorescent compound DCF, which 
can be detected using fluorescence or 

chemiluminescence.

[149]

Superoxide Anion 
Detection Kit Enzo Life Sciences Specifically detects 

superoxide anions.
Utilizes chemiluminescent probes to react with 

superoxide, producing a chemiluminescent signal. [150]

Hydrogen Peroxide 
Assay Kit Abcam Quantification of 

hydrogen peroxide levels

Chemiluminescent reaction with luminol in the 
presence of hydrogen peroxide, producing light 

emission
[151]

OxiSelect™ In Vitro 
ROS/RNS Assay Kit Cell Biolabs, Inc

Detection of ROS and 
reactive nitrogen species 

(RNS)

Employs a chemiluminescent substrate to detect 
a broad spectrum of ROS and RNS [152].

Luminol 
Chemiluminescence 

Assay Kit
BioVision General detection of 

ROS
Luminol reacts with ROS to produce a 
chemiluminescent signal that can be measured [153]

ROS-ID® Total ROS/
Superoxide Detection Kit Enzo Life Sciences

Simultaneous detection 
of total ROS and 

superoxide

Chemiluminescent probes are used to detect both 
total ROS and superoxide levels [154]

Amplex Red Hydrogen 
Peroxide/Peroxidase 

Assay Kit

Thermo Fisher 
Scientific

Quantification of 
hydrogen peroxide levels

Amplex Red reacts with hydrogen peroxide in the 
presence of peroxidase to produce a fluorescent 

or chemiluminescent signal
[155]

ROS-Glo™ H2O2 Assay Promega Detection of hydrogen 
peroxide.

Utilizes a luminogenic substrate to quantify 
hydrogen peroxide levels through a 

chemiluminescent reaction.
[156]

Table 2: List of commercially available assay kits for chemiluminescence that are intended to detect reactive oxygen species (ROS) in tissues 
and cells

cellular metabolism. Overproduction of reactive oxygen 
species (ROS) or inadequate antioxidant defenses can result 
in oxidative stress, which damages proteins, lipids, and 
DNA and can lead to disorders including cancer, diabetes, 
cardiovascular disease, neurodegenerative disorders, and 
aging. Prolonged inflammation increases the formation 
of ROS, which damages tissue and accelerates the course 
of inflammatory diseases. Oxidative stress levels in cells, 
tissues, and biological fluids may be measured by ROS 
analysis. Assessing ROS levels helps to assess the harmony 
between the generation of ROS and antioxidant defense 
systems.Among them, the two easy accessible, sensitive, 
and cost-effective methods for analyzing ROS production 
are 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) 
assay [157] and dihydroethidium (DHE) staining [158]. 
DCFH-DA labeling can measure ROS formation following 
chemical treatment, inflammatory signaling activation, or 
genetic mutation [159]. DCF is mostly measures hydroxyl 
radicals, peroxynitrite, and hydrogen peroxide, among other 
ROS [160]. This makes it possible to measure oxidative 
stress due to various causes, though cannot differentiate 
between them. It is adaptable for researching oxidative 

stress under different experimental settings as it may be used 
to measure overall ROS levels in cells and tissues [160]. 
Fluorescence microscopy may be used to visualize DCF, 
which gives spatial information regarding the distribution 
of ROS within cells and tissues.  Reactive oxygen species 
(ROS) are produced by various cellular compartments, 
including mitochondria, endoplasmic reticulum (ER), and 
peroxisomes. Mitochondria are the primary source of ROS 
during aerobic respiration, producing byproducts of the 
electron transport chain. Fluorogenic probes MitoSOXTM 
Red and MitoTracker Red CM-H2XRos are used to detect 
ROS. Fluorescent dyes like dihydroethidium (DHE) can also 
be used to quantify mitochondrial ROS. ER-specific probes 
like ER-Tracker Red, Blue White DPX, and CellROX Green 
can find ROS inside the ER compartment. The unfolded 
protein response (UPR) pathway's activity is measured using 
the FRET-based ER stress sensor. Peroxisomes, involved in 
hydrogen peroxide synthesis and metabolic activities, can be 
identified using dyes CellROX Orange and DCF-DA. Real-
time monitoring of hydrogen peroxide level fluctuations can 
be achieved using the genetically encoded fluorescent probe 
HyPer.
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Unlike the DCF approach, dihydroethidium (DHE) 
is used to assess in situ ROS production [161]. Using an 
epifluorescence-equipped microscope and a digital camera, 
the tissues stained with the dye are recorded. The fluorescence 
measured at 585 nm long-pass filter, and the number of 
ethidium bromide-labeled nuclei that directly measured the 
ROS intensity are counted using ImageJ software. Moreover, 
DHE assay is compatible with flow cytometry, mitochondrial 
oxidative stress, and live-cell imaging methods. It helps 
characterize subpopulations within a sample by identifying 
cells that produce more superoxide [162].

Importance of pro-inflammatory cytokine release 
after RAGE activation 

Pro-inflammatory cytokines are released as a result of 
intracellular signaling pathways being activated by RAGE 
when coupled with ligands such as AGEs, S100 proteins 
[120], and HMGB1 [163]. These cytokines, which include 
TNF-α, IL-1β, and IL-6, play a crucial role in amplifying 
the inflammatory response, promoting the recruitment and 
activation of immune cells [163]. Pro-inflammatory cytokines 
released during RAGE-mediated inflammation contribute 
to the recruitment of immune cells, such as macrophages, 
neutrophils, and T cells, to the site of inflammation [164]. 
They also contribute to tissue damage and remodeling, 
potentially leading to chronic inflammation and tissue 
damage [163]. RAGE activation induces the activation of 
intracellular signaling pathways, including NF-κB and MAK 
pathways, which lead to the transcription and release of 
pro-inflammatory cytokines [163]. Dysregulation of RAGE-
mediated persistent inflammation and its associated cytokine 
release has been linked to the pathogenesis of chronic diseases 
like diabetes, cardiovascular diseases, neurodegenerative 
disorders, and inflammatory autoimmune conditions [165]. 
Cytokines also contribute to the crosstalk between different 
cell types involved in the inflammatory response, creating a 
complex network that influences inflammation progression 
[165]. Modulation of immune responses by cytokines 
released during RAGE-mediated inflammation can have both 
protective and detrimental effects depending on the milieu 
[165]. List of proinflammatory cytokines activated during 
RAGE activations are listed in Table 3.

To comprehend the scope and dynamics of the 
inflammatory response, pro-inflammatory cytokine 
production during RAGE-mediated inflammation must 
be measured. Immune cell activation state and cytokine 
levels may be determined using real-time quantitative PCR 
for cytokine mRNA quantification and enzyme-linked 
immunosorbent assay (ELISA), Western Blotting, and 
immunohistochemistry for cytokine protein determination 
for cytokine protein production determination.
Quantitative techniques to assess the proinflammatory 
cytokines.

Quantitative Q-PCR may detect mRNA expression of 

cytokines at their transcription levels from small amounts 
of samples. . Even though it is cost effective, its drawbacks 
include need to isolate various cell types, and the inability to 
cross the threshold for detection in situations when only a small 
percentage of cells release the cytokines. It is a delicate test that 
necessitates cautious experimental design, implementation, 
and validation due to technical constraints such template 
quality, operator variability, the reverse transcription phase, 
and subjectivity in data processing and reporting [191]. An 
effective technique for precisely quantifying nucleic acids in 
a sample is digital polymerase chain reaction, or dPCR [192]. 
When working with limited or vital samples, when precision 
is crucial, it is very helpful. Digital PCR (dPCR) is a technique 
that partitions a sample into thousands of individual reactions 
to provide absolute quantification of target nucleic acids, 
with higher precision and sensitivity compared to traditional 
PCR [193]. It's particularly useful when dealing with small 
sample quantities or low concentrations of targets, as it's 
less susceptible to variations in amplification efficiency or 
sample quality [194]. Additionally, analyzing multiple 
samples can provide a more comprehensive understanding 
of target nucleic acid concentration variability, leading 
to more reliable conclusions in diagnostic assays [195]. 
Cytokine detection and quantification depend heavily on 
the digital PCR (dPCR) [196]. A single-molecule resolution 
offered by dPCR makes it possible to identify and measure 
individual cytokine molecules, which is very helpful for 
studying the heterogeneity of cytokine expression and finding 
uncommon cytokine-producing cells [197]. Furthermore, 
the multiplexing capabilities of dPCR make it possible to 
quantify many cytokines simultaneously in a single reaction, 
offering thorough insights into immune system activity and 
cytokine signaling pathways [198].

NanoString is another technological tool for understanding 
complex biological processes [199]. This powerful method 
enables simultaneous high-throughput study of copy 
number variations, miRNA levels, gene expression, and 
protein expression [199]. Its great sensitivity, accuracy, and 
adaptability make it perfect for a variety of uses, ranging 
from clinical diagnostics to fundamental research. Because 
nanostring can profile numerous targets at once, it's a useful 
tool for studying complicated biological processes, finding 
biomarkers, and creating specific therapy strategies [200]. 
NanoString technology offers several benefits for cytokine 
quantification, including multiplexing capability, high 
sensitivity and specificity, unbiased quantification, flexible 
assay design, digital counting technology, and compatibility 
with various sample types [201].

Another technique that can detect released cytokines at 
the protein level is ELISA. It has drawbacks as well, such the 
challenge of getting enough tissue fluids and the possibility 
of underestimating real cytokine levels because of cytokine 
consumption by cells.  Additionally, this technique makes 
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Cytokines Functions in RAGE pathway References

Interleukin-1β (IL-1β)

•	 Recruitment of inflammatory cells such as neutrophils and monocytes to the site of inflammation.

•	 Inducing the expression of adhesion molecules, chemokines, and other cytokines

•	 Inducing the production of matrix metalloproteinase (MMPs) and other enzymes involved in 
tissue remodeling.

•	 Promoting the differentiation and activation of T cells

[166]

[167]
[168]
[169]

Tumor Necrosis Factor-
alpha (TNF-α)

•	 Stimulating various immune (such as macrophages and neutrophils) and non-immune cells.

•	 Contributing to the initiation and propagation of inflammatory signaling cascades.

•	 Inducing vasodilation and increasing vascular permeability.

•	 Contributing to cell death and tissue injury.

•	 Influencing the activation and function of T cells.

[170]
[171]
[172]
[173]
[2]

Interleukin-6 (IL-6)

•	 Inducer of the acute phase response, leading to the synthesis of acute-phase proteins

•	 Stimulating hepatocytes to produce acute-phase proteins such as C-reactive protein (CRP)

•	 Inducing the differentiation and function of T cells and modulate adaptive immune responses

•	 Modulating endothelial function and promoting angiogenesis

•	 Contributing to tissue alterations and repair mechanisms.

[174]

[175]
[176]
[177]
[178]

IL-8 (CXCL8)

•	 Promoting the recruitment of neutrophils to the site of inflammation

•	 Contributing to angiogenesis

•	 Inducing the expression of adhesion molecules on endothelial cells, facilitating the adhesion of 
immune cells to the vascular endothelium

[179]

[180]
[181]

Monocyte 
Chemoattractant 
Protein-1 (MCP-1)

•	 Recruitment of monocytes

•	 Induces accumulation of cholesterol and immune cells in arterial walls and contribute to the 
development and progression of atherosclerotic plaques.

[182]
[183]

Interleukin-17 (IL-17)

•	 Produced by T helper 17 (Th17) cells and enhancing the inflammatory response

•	 Recruiting immune cells, especially neutrophils, to the site of inflammation

•	 Enhancing antimicrobial responses, particularly against extracellular pathogens

[184]

[185]
[186]

Interferon-gamma 
(IFN-γ)

•	 Contribute to the polarization of immune responses toward a Th1

•	 Contribute to the activation of macrophages, leading to enhanced phagocytosis and production 
of inflammatory mediators

[187]

[188]

Transforming Growth 
Factor-beta (TGF-β)

•	 Acting as both a pro-inflammatory and anti-inflammatory cytokine in a context-dependent 
manner

•	 A key regulator of tissue repair and remodeling

[189]

[190]

Table 3: Proinflammatory cytokines activated during RAGE activations
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it possible to identify small concentrations of cytokine-
producing cells in a tissue that may not release enough 
cytokines to be picked up by other techniques. However, this 
approach might have limited sensitivity for protein secretion 
detection, and it is not as quantitative as the previous three 
methods. An alternative method for determining cytokine 
mRNA species is in situ hybridization on paraffin or freshly 
frozen tissue slices. This method will identify the types of 
cells that produce cytokines and where they are found. But 
like immunohistochemistry, this technique lacks quantitative 
capability, and the presence of RNA is not always indicative 
of the presence of protein[202]. One useful method for 
determining cytokine levels is flow cytometry, which offers 
many ways to measure cytokines in cell culture supernatants 
or at the single-cell level [203]. 

Using flow cytometry, intracellular cytokine staining 
is utilized to examine the expression of cytokines like 
interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), 
and interferon-gamma (IFN-γ) [204]. The analysis of 
cytokine expression among various immune cell subsets, 
such as CD4+ T cells, CD8+ T cells, and natural killer cells, 
is therefore done using flow cytometry [205]. This process 
offers insights into the distinct cytokine-producing cell 
populations implicated in the antiviral immune response. 
Another novel approach to studying proteins in biological 
fluids such as blood, urine, saliva, and cerebrospinal fluid is 
the use of liquid tissue [206]. In liquid tissue studies, samples 
are taken, and their proteins are identified and quantified by 
analysis. Non-invasive sampling, thorough protein profiling, 
dynamic and varied samples, and the possibility of clinical 
application are some advantages of liquid tissue research. 
All things considered, liquid tissue research might lead to 
breakthrough discoveries in patient diagnosis and treatment.

RAGE and apoptosis
Chronic inflammation has been shown to contribute to 

cell death, and RAGE activation is frequently associated 
with inflammatory responses. RAGE-mediated signaling 
has the potential to trigger pro-inflammatory pathways and, 
under specific conditions, result in inflammatory-induced cell 
death [10]. Apoptosis is an essential step for proper growth 
and tissue homeostasis [207], and RAGE plays a significant 
role in it [208]. By inducing either apoptosis or survival, its 
signals can affect cell fate decisions [208]. RAGE-mediated 
apoptosis has been connected to neurological disorders like 
Alzheimer's and may be engaged in physiological functions 
or cell removal [209]. The extrinsic apoptotic pathway, 
which involves death receptors including Fas (CD95) and 
tumor necrosis factor receptor 1 (TNFR1) [210], can also be 
triggered by RAGE-AGE interaction [211].  This interaction 
can affect mitochondrial function and cause oxidative stress 
[211]. Pro-apoptotic substances, such cytochrome c, can be 
released from the mitochondria when there is a disruption 

in the integrity and function of the mitochondria [212]. 
This leads to the activation of downstream effector caspases 
via the activation of caspase-8 [212].Cytochrome c release 
triggers the intrinsic apoptotic process by activating caspases, 
namely caspase-9 [213]. Caspase-9 triggers caspase-3, -6, 
and -7, which are downstream effector caspases that cleave 
different cellular substrates and eventually cause apoptosis in 
cells [214]. The article discusses a number of approaches for 
evaluating cell death.

Quantitative assays for assessing cellular viability and 
apoptosis rates in response to RAGE activation 

Several quantitative assays that are commonly used 
to assess cellular viability and apoptosis rates in response 
to RAGE activation are MTT assay, CCK-8 assay, PI and 
Annexin V staining for flow cytometry, TUNEL assay, 
caspase activity assays, DNA fragmentation assay, real-
time cell analysis, and LDH release assay. Among the cell 
viability assays, the most widely used cell viability assay is 
MTT assay [215]. It is the colorimetric method for assessing 
cellular viability and proliferation, offering quantitative 
measurement, high sensitivity, ease of use, cost-effectiveness, 
versatility, and compatibility with high-throughput 
screening. Even though it is compatible with both adherent 
and suspension cells, the potential limitations include 
interference from compounds, the need for a viable cell 
population, and inability to distinguish between proliferating 
and non-proliferating cells. The MTT assay measures cell 
viability and metabolic activity but can be affected by certain 
compounds or experimental conditions, leading to inaccurate 
results. To obtain reliable results, careful experimental design 
and validation are necessary [216]. The assay relies on viable 
cells, so it may not be accurate if a significant proportion 
of non-viable or apoptotic cells are present. The assay does 
not distinguish between proliferating and non-proliferating 
cells, so additional assays may be required to provide a more 
complete assessment of cellular responses [216]. Hence, a 
variety of factors influence the results of the MTT test. To 
prevent obtaining false conclusions about the viability of 
cells, the toxicity of treatments, and the metabolism of cells, 
the assay must be optimized, and the data must be carefully 
interpreted.

Compared to MTT assay, the CCK-8 assay provides 
several advantages including reduced incubation time, direct 
quantification, high sensitivity and linearity, broad dynamic 
range, a single-step process, no toxicity to cells, compatibility 
with multimode readers, and stable formazan product [217]. 
Additionally, the CCK-8 assay generates a measurable 
signal within 1-4 hours, enabling quicker data acquisition 
[218]. Furthermore, it is compatible with live cells and 
does not require solubilization steps, simplifying the assay 
procedure. The formazan product generated by the CCK-8 
assay is water-soluble, allowing for direct quantification 



Deepu V, et al., Arch Intern Med Res 2024
DOI:10.26502/aimr.0168

Citation:	Vinitha Deepu, Vikrant Rai, Devendra K. Agrawal. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE 
Activation. Archives of Internal Medicine Research. 7 (2024): 80-103.

Volume 7 • Issue 2 92 

without solubilization solutions, and reducing the likelihood 
of experimental errors [218]. Overall, these studies provides 
valuable insights into RAGE signaling and cellular survival 
and utilizes a reliable and efficient method for assessing cell 
viability.

Flow cytometry is a widely used method to assess cell 
death, particularly in the context of RAGE-mediated cell 
death [219]. The combination of Propidium Iodide (PI) 
staining and Annexin V staining categorizes cells into live, 
early apoptotic, late apoptotic, and necrotic populations. 
An increase in Annexin V-positive cells indicates apoptotic 
pathway activation [220]. The specificity of ligands used to 
activate RAGE is crucial, as RAGE signaling can influence 
various cell death pathways. Additional cell death assays 
can confirm findings for a more detailed understanding of 
cell death mechanisms. TUNEL assay provides visual and 
quantitative information, caspase activity assays directly 
measure key enzymatic events, and DNA fragmentation 
assays offer insights into the later stages of apoptosis [221]. 
Detects DNA fragmentation, a characteristic feature of 
apoptosis [222]. The list of cell death assay and its advantages 
are listed in Table 4.

RAGE and mitochondrial membrane potential 
Mitochondrial dysfunction is a well-known contributor 

to cell death, which can occur through either apoptosis or 
necrosis [227]. Recent discoveries have shown that RAGE 
activation is associated with oxidative stress and inflammation 
[228], plays a significant role in mitochondrial dynamics, 
respiration, and oxidative stress [228]. The opening of the 
MPTP (mitochondrial permeability transition pore) is a 
critical event that leads to mitochondrial dysfunction and is 
linked to various forms of cell death, including apoptosis 
and necrosis [229]. The MPTP opening can be triggered 
by various conditions, such as cellular stress, injury, and 
increased reactive oxygen species (ROS) production [230], 
and can result in the collapse of the mitochondrial membrane 
potential (ΔΨm) and the release of pro-apoptotic factors 
[230]. Calcium influx and RAGE activation can also impact 
mitochondrial function by sensitizing mitochondria to MPTP 
opening [231]. The increased cytosolic and mitochondrial 
calcium levels, driven by RAGE signaling, also contribute to 
MPTP opening [231]. ROS can modulate proteins involved 
in MPTP regulation, and phosphate can interact with 
mitochondrial proteins and contribute to the regulation of 
MPTP [232]. 

Various techniques, such as flow cytometry, spectroscopy, 
and fluorescence microscopy, can be employed to assess 
mitochondrial function by monitoring changes in ΔΨm 
[233], calcium retention capacity [234], or the release of 
mitochondrial proteins [235]. The MPTP assay provides a 
valuable tool to investigate the role of RAGE in mitochondrial 

permeability transition and its contribution to cellular 
responses [236]. It is essential to complement the results from 
the MPTP assay with other assessments of mitochondrial 
function, such as ΔΨm measurements or evaluations of 
mitochondrial protein release. Additional assays, such as 
apoptosis markers or caspase activity assays, can confirm the 
occurrence of cell death. 

Cell lines or primary cells expressing RAGE or exposed 
to RAGE ligands can be used to investigate the impact on 
mitochondrial function. Various agents, such as calcium 
ionophores or oxidative stress inducers, can be used to 
modulate MPTP opening [237]. MPTP inhibitors can be 
employed to assess the role of MPTP in RAGE-mediated 
effects [238]. The use of specific RAGE inhibitors or 
activators, along with assessments of MPTP opening, can 
provide insights into the causal relationship between RAGE 
activation and mitochondrial permeability transition. 

In summary, RAGE activation impacts mitochondrial 
membrane potential and function, leading to cell death. 
The opening of MPTP, which is associated with RAGE 
activation, can result in mitochondrial swelling, rupture, 
and the release of pro-apoptotic factors. The MPTP assay 
provides a valuable tool to investigate the role of RAGE in 
mitochondrial permeability transition and its contribution 
to cellular responses, shedding light on the mechanisms 
underlying RAGE-mediated cell death. The use of specific 
RAGE inhibitors or activators, along with assessments 
of MPTP opening, can provide insights into the causal 
relationship between RAGE activation and mitochondrial 
permeability transition, which can help identify new targets 
for therapeutic interventions.

Future Directions
RAGE is a transmembrane receptor protein that has been 

implicated in various pathological and physiological processes. 
It plays a crucial role in the development and progression of 
several diseases such as diabetes, Alzheimer's, and cancer, 
by inducing chronic inflammation and contributing to tissue 
damage. Therefore, the inhibition or attenuation of RAGE 
signaling has become a promising therapeutic option. siRNA 
and shRNA are two techniques that can be used to inhibit 
RAGE activity. They are designed to specifically target and 
silence the RAGE gene, resulting in the degradation of RAGE 
mRNA and the prevention of RAGE protein synthesis. This 
approach has been shown to effectively attenuate RAGE 
signaling in different experimental models, making it a 
promising strategy for treating RAGE-related diseases.

A potential approach for creating innovative treatments 
to reduce the harmful consequences of RAGE activation in 
various disorders is the design of small molecule inhibitors 
that target the binding interface between RAGE and its 
ligands, such as AGEs, HMGB1, and S100 proteins. 
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Designing small compounds that obstruct RAGE-ligand 
interactions can be achieved by high-throughput screening 
and structure-based drug design techniques. The activation 
of RAGE and subsequent signaling can be stopped by small 
compounds that either block the ligand-binding site on RAGE 
or imitate the structure of RAGE ligands. Soluble RAGE, or 
sRAGE, is one such substance that is now in use. Its specific 
function is to suppress RAGE-mediated signaling pathways. 

Another possible strategy is to create small molecule 
inhibitors that specifically target significant signaling 
molecules such JAK/STAT pathways, NF-κB, MAPKs, 
and PI3K/Akt pathways that occur downstream of RAGE 
activation. It is possible to find small compounds that 
specifically block RAGE-mediated signaling pathways 
while leaving physiological signaling pathways unaffected 
by screening compound libraries or applying computational 
methods.  By interrupting the pro-survival and inflammatory 
signaling cascades brought on by RAGE activation, these 
inhibitors can decrease the pathogenic consequences of 
RAGE signaling. Preclinical studies have shown that these 
drugs have promising therapeutic potential, and some of them 
are currently being evaluated in clinical trials. By targeting 
RAGE-ligand interaction and downstream signaling using 
novel small drugs, it is possible to develop better therapeutics 
for patients suffering from RAGE-related diseases.

Therefore, the creation of small-molecule drugs that 
target downstream signaling pathways and RAGE-ligand 
interactions holds enormous potential for translational 

research and the development of novel therapeutics for the 
treatment of RAGE-associated diseases, such as cancer, 
neurodegenerative diseases, chronic inflammatory conditions, 
and complications from diabetes.

Conclusion
RAGE- ligand binding activates various intracellular 

signaling pathways, contributing to cellular responses in 
inflammation, oxidative stress, and immune reactions. The 
MAPK/ERK, PI3K/Akt, and JAK/STAT pathways are the 
major intracellular signaling cascades triggered by RAGE 
activation. RAGE activation is associated with various 
inflammatory-related clinical conditions, including diabetes, 
cancer, vascular disease, and neurodegeneration. Quantitative 
assessment techniques, such as Mass Spectrometry 
(MS), Phosphoproteomics Antibody-Based Techniques 
such as western blotting, immunoprecipitaion (IP) and 
immunofluoresence microscopic examination and high-
throughput screening of protein interactions and modifications 
by protein microarrays and site-directed mutagenesis along 
with classic PCR, real-time PCR, , are employed to assess 
RAGE activation under different inflammatory conditions. 

In order to provide precise and efficient therapies for 
diseases associated with RAGE dysregulation, further study 
is needed to completely understand the function of RAGE 
in disease evaluation and treatment. Therefore, translational 
research and the development of novel therapeutics for the 
treatment of RAGE-associated diseases, including cancer, 

Assay Advantages Disadvantages References

PI (Propidium 
Iodide) Staining

•	 Used to identify necrotic cells based on their 
increased membrane permeability

•	 A simple and quick assay for distinguishing live 
and dead cells

•	 PI staining does not differentiate between apoptotic 
and necrotic cell death.

•	 It is not specific to particular cell death pathways
[223]

Annexin V 
Staining

•	 Annexin V is used to detect apoptotic cells by 
binding to phosphatidylserine exposed on the 
outer leaflet of the plasma membrane during 
early apoptosis

•	 Allows discrimination between early apoptotic, 
late apoptotic, and necrotic cells

•	 It may not accurately distinguish between 
apoptosis and other forms of cell death.

•	 The method may yield false positives or negatives 
in certain conditions.

[224]

TUNEL 
(Terminal 

deoxynucleotidyl 
transferase 

dUTP nick end 
labeling) Assay

•	 TUNEL detects DNA fragmentation, a 
characteristic feature of apoptosis.

•	 It provides information on the late stages of 
apoptosis

•	 It may not be specific for apoptosis as DNA 
fragmentation can occur in other forms of cell 
death.

•	 False positives may occur due to DNA damage 
unrelated to apoptosis.

[224]

Caspase Activity 
Assays

•	 Caspases are key enzymes in the apoptotic 
pathway, so their activity assays can specifically 
indicate apoptosis.

•	 Various caspase substrates allow detection of 
different caspase activities.

•	 Some cells may undergo caspase-independent cell 
death pathways.

•	 Caspase activation does not exclusively indicate 
apoptosis.

[225]

DNA 
Fragmentation 

Assay

•	 Detects DNA fragmentation associated with 
apoptosis.

•	 Can be used to assess the later stages of 
apoptosis

•	 Similar to the TUNEL assay, it may not be entirely 
specific for apoptosis.

•	 May miss early apoptotic events
[226]

Table 4: Advantages and disadvantages of different RAGE specific cell death assays
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neurodegenerative disorders, and chronic inflammatory 
conditions, are greatly encouraged by the discovery of small 
molecule drugs that target RAGE-ligand interactions and 
downstream signaling pathways.
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