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Abstract

Radiofrequency ablation (RFA) offers localized and minimally invasive
treatment of small-to-medium sized inoperable tumors. In RFA, tissue is
ablated with high temperatures obtained from electrodes (needles) inserted
percutaneously or via open surgery into the target. RFA treatments are
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1 Introduction

Hepatocellular carcinoma is the fifth-most common diagnosed malignancy, and the third-most frequent cause
of cancer-related deaths world-wide (Bhardwaj et al, 2010; Rempp et al, 2011; WHO, 2012). Although
surgical resection is the preferred treatment choice for liver cancer, up to 80% of these patients cannot be
operated on due to tumor location or existing co-morbidities (Bhardwaj et al, 2010; O’Rourke et al, 2007;
Pearson et al, 1999). Focal ablation (removal of tissue with extreme temperatures), a localized, minimally
invasive treatment option for small- to medium-sized (Rempp et al, 2011) tumors with fewer side effects
than surgery, radiation, or chemotherapy, is then the treatment option for such patients. Ablation has been
used to treat several cancer sites including liver, abdomen, renal, lung, and prostate (Dupuy et al, 2000;
Eggener et al, 2007; Livraghi et al, 2003; Pavlovich et al, 2002). It has few side effects, short recovery times,
out-patient delivery, and minimal organs-at-risk (OARs) damage due to localized treatment (Goldberg et al,
2000). There are several ablative therapies including microwave ablation (MWA), radiofrequency ablation
(RFA), high intensity focused ultrasound (HIFU), laser ablation, and cryoablation. We present a systematic
approach to deliver RFA treatments by quantifying tissue damage using several different models. This
framework is applicable to other ablation modalities.

In RFA, a needle is inserted into the target (tumor or lesion) percutaneously or via open surgery, and high
frequency alternating current is passed through the needle. Heat is generated due to tissue resistance and
the target achieves necrosis when exposed to high temperatures for an adequate amount of time. Despite its
appealing characteristics, RFA has the potential for incomplete ablation, and therefore a high local recurrence
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(regrowth) (Bhardwaj et al, 2010), when the tumor is close to large blood vessels, the needle is incorrectly
placed, or insufficient heat is delivered. Needles are typically guided into position with the assistance of
ultrasound imaging (Neshat et al, 2013), with the patient optionally sedated, though patient cooperation can
be useful in some situations, particularly liver and lung ablation (Piccioni et al, 2019).

In inverse planning, the target and OARs are divided into unit grids called voxels (“volume pixels”)
and optimal doses are sought for these structures. This methodology has been previously used successfully
to plan cancer treatments using radiosurgery (Ferris and Shepard, 2000; Ferris et al, 2002; Ghobadi et al,
2012, 2013) and intensity modulated radiation therapy (Romeijn and Dempsey, 2008). Unfortunately, unlike
radiation treatments, where dose delivered from several beams is additive, heat delivered from multiple
needles is not directly additive and must be calculated using Pennes’ bioheat transfer equation (BHTE), a
partial differential equation (PDE) (Wissler, 1998). Further, BHTE does not consider the amount of time a
voxel is exposed to a temperature. Alternate thermal damage models, e.g., the Arrhenius thermal damage
model (ATDM) (Henriques, 1947; Henriques and Moritz, 1947; Moritz, 1947; Moritz and Henriques, 1947)
and cumulative equivalent minutes at 43°C (CEMy3) (Sapareto and Dewey, 1984), use a voxel’s temperature
history, obtained from BHTE, during the course of treatment to determine tissue thermal damage. These
models, although nonlinear, are additive across multiple needles. Thus, the development of inverse plans for
ablation is mathematically challenging due to the inherent nonlinear nature of thermal damage. Because
RFA operates at temperaturs > 60°C, CEMy3 is not an appropriate model for this ablation therapy.

Existing work on RFA inverse planning can be categorized into exact and inexact methods. Inexact
methods approximate the ablated region to a sphere or an ellipse of a known fixed size based on the needle
used (Butz et al, 2000; Mundeleer et al, 2009; Villard et al, 2005; Zhang et al, 2007). A voxel within the
ablated sphere or ellipse is considered destroyed. Thus, there is no actual dose computation and the needle
is positioned by unconstrained optimization models solved using Powell’s (Butz et al, 2000; Villard et al,
2005; Zhang et al, 2007) or Nelder-Mead (Downhill Simplex) (Mundeleer et al, 2009; Villard et al, 2005)
algorithms. The objectives of these models are typically to maximize the difference in unablated target and
OAR volumes for single (Butz et al, 2000; Villard et al, 2005; Zhang et al, 2007) or multiple RFA applicators
(Mundeleer et al, 2009). Although these methods are fast and the assumption of knowing the ablation radii
a priori is plausible, they do not consider the presence of cooling effects like blood perfusion and therefore
may result in incomplete ablation.

Exact methods (Altrogge et al, 2007; Chen et al, 2006, 2009; Haase et al, 2012) compute the thermal
dose received by a voxel at each time step using BHTE where the energy absorbed due to the radiofrequency
electric source, referred to as the specific absorption rate (SAR), is obtained using the Laplacian equation, an
electrostatic PDE. Thus, there is no prior assumption on ablation radii. The decision variables in exact models
are the position and the orientation of the needle with fixed treatment time, and hence, needle positioning and
thermal dose optimization are simultaneously performed. The resulting models are nonlinear, constrained
by a system of PDEs describing the electric potential of the applicator and steady-state BHTE with (Haase
et al, 2012) or without (Altrogge et al, 2007) consideration of risk structures (e.g., ribs), and are solved
using gradient-based optimization methods (Altrogge et al, 2007; Haase et al, 2012). Models that use the
Arrhenius-based thermal damage model to minimize the survival fraction of the target using steepest descent
(Chen et al, 2006, 2009) have better computational tractability. Since needle positioning and thermal dose
computation happen simultaneously, these models require computation of a PDE, a computationally intensive
task, at every new needle position and orientation. Further, these methods are tailored to RFA-specific PDEs
(electrostatic field) and therefore cannot be immediately applied to MWA (electromagnetic field) or HIFU
(acoustic field).

We approach the RFA inverse planning problem in two stages, incorporating ideas from exact as well as
inexact methods. In the first stage, called needle orientation optimization (NOO), we use geometric shape
approximations to compute needle position and orientation for single needle and multiple independent single
needle scenarios, where clustered needles with relative fixed positions are treated as a single needle. In the
second stage, we use the NOO solution to optimize the duration and voltage of the needles using BHTE; this
stage is called thermal dose optimization (TDO), and several common thermal damage models are explored.

Using the solution from NOO, we enumerate solutions for different damage models by pre-computing
them for a fixed treatment time for different source voltages and needle types. We then perform a look-
up to identify minimum source voltage and treatment time based on full target coverage. Using this large
amount of information, we are able to perform several different analyses, including change in target and OAR
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Algorithm 1 Focal ablation framework
Require: N < Set of needles type
Require: V «+ Set of source voltages
Require: d € D <+ Damage model
Require: S <+ Set of structures

1: for n € N do

2: S,, < Perform NOO

3: for ¢ €V do

4: L <+ computeLaplacian(S,,, @) > Solve Laplacian
5: HEBHTE(p n ) + computeBHTE(L) > Solve BHTE
6: if d € D = {ATDM, D63, D70, D80, D95} then

7: HATPM (¢ i, £) < computeArrhenius(HPHTE (¢, n, 1)) > Solve ATDM
8: if d € D = {D63, D70, D80, D95} then

9: H?(¢$,n,t) + computePercentDamage( HATPM (¢, n, 1))

10: end if

11: end if

12: t*(¢,n) + solve Minimum treatment time

13: end for

14: ¢%* < solve Minimum voltage

15: end for

16: (¢, n?)* « Get best needle configuration (Algorithm 2)
17: return [(gbd,nd)*,td*(qﬁd,nd)]

coverage volumes against increasing source voltages and needle types. Finally, we identify the best needle
configuration that gives full target coverage and the least OAR damage.

Our methodology has several benefits over current strategies, both in terms of computational methodology
and clinical practicality. Methodologically, we eliminate the need to compute BHTE at each iteration, thereby
saving several hours of computation time, and we eliminate geometric assumptions from NOO in TDO where
we compute the actual thermal dose delivered. By pre-computing damage models, we again save computation
time and are able to analyze target damage at different source voltages. With respect to clinical practicality,
we are able to determine OAR damage, which we exploit to determine the best needle configuration for
treatment. The detailed analysis enables the decision maker to obtain a complete treatment plan for the
preferred damage model. Finally, we can also extend our framework to other focal ablation methods like
MWA by solving a different set of PDEs instead of BHTE.

The remainder of this paper is organized as follows. Section 2 presents the methodology, including NOO
and TDO. Numerical results and discussion are provided in Section 3 and 4, respectively.

2 Methodology

Let T be the set of target structures. Voxels not identified as target form the OAR set, H. Further, let
N, V, and D be the set of needles, source voltages, and damage models, respectively. For n € A/, we perform
NOO for a target in 7. Using the computed needle position and orientation, we determine thermal damage
to the target for each ¢ € V. Finally, we identify the best needle configuration ((¢,n) € VxN') and treatment
time. The complete framework is presented in Algorithm 1.

2.1 Needle orientation optimization

We explore NOO for three kinds of needle configurations: (i) single needle, (ii) clustered needles, and (iii) 2-3
independent needles (called multiple needles) (Medtronic, 2016). A clustered needle is a single device with
three parallel tines (needles) that operate simultaneously. Multiple needles are multiple single needle devices
that can be inserted randomly or in parallel. They can either be operated simultaneously or individually to
ablate a larger volume or several smaller volumes, though simultaneous operation is clinically more common
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Figure 1: Cool-tip™ RF Ablation System E Series electrodes (Medtronic, 2016)

for individual target volumes as heat damage (scarring) from previous needles in sequential ablation results
in unpredictable ablation to remaining untreated cells. In practice, a single needle configuration is used
according to specific equipment availability and the preference of the interventional radiologist performing
the procedure, and we therefore present models for each configuration, allowing interventional radiologists to
chose the model that corresponds to their clinical preferences. We assume that the needles are inserted in a
random order and are operated simultaneously.

Vendor specifications indicate an ellipsoidal (Figure 1(a)) and spherical (Figure 1(b)) shape of thermal
lesions for single and clustered RFA electrodes, respectively (Medtronic, 2016).

The NOO problem can therefore be represented as fitting a smallest ellipse (minimum volume covering
ellipse, MVCE) or sphere (minimum volume covering sphere, MVCS) around the target. The central axis of
the fitted ellipse or sphere is the orientation of the needle. We formulate the MVCE and MVCS optimization
models as follows. Let 7' C T be the set of target boundary voxels, & be the center of the needle, Z; be the
coordinate position for voxel j € T.

Using a fixed space separator, multiple electrodes placed parallely and operated simultaneously assume a
spherical lesion and can be treated as a clustered electrode (Figure 1(b)). However, when needles are inserted
randomly, geometric shapes are unclear. Therefore, for the purpose of NOO, in the case of k multiple needles,
we treat each needle as though it were operated independently and divide the tumor into k clusters where
each cluster corresponds to single needle coverage. A similar approach was used by Chen et al (2009). The
orientations are determined by MVCE and the entire process is referred to as NOO-Kmeans. The independent
needle operation assumption is later relaxed in TDO.

2.1.1 Single and clustered needle placement

From basic algebra, the equation of an ellipse in m dimensions with center (cy,...,¢y) and radii (a1, ..., am)
is given by
2 2
T —cC Ty — C
(@1 =e)” 21) +...+7(m2m) <1 (1)
aj =
where z1,...,z,, are coordinates of target voxels inside the closed ellipse. Using matrix notation, we can

rewrite Equation 1 as a set of points, &:

E={% | (Z -0 A —&) <1VjeT} (2)
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where A € S™ Ty set of m x m symmetric positive definite matrices, is full rank, and m is the dimensionality
of the matrix A which in our case is 3 since the target is 3D. The eigenvalue decomposition of matrix A is
given by A= QTZQ, where Q € R™*™ is an orthonormal matrix representing the eigenvectors of A and
Y e R™XMisa diagonal matrix whose entries (Aq, ..., A, ) represent the eigenvalues of A. From the Principle
Axis Theorem, the square root of the inverse of the eigenvalues represent the length of each semi-axis of the
ellipse, i.e., a; = (1 / \//\7), while the eigenvectors, i.e., columns of C,?, represent its orientation. The volume of

an ellipse is therefore proportional to a; X -+ X a,, = \/()\1 X oo X Ap)7E = det (\/ i*l) = det (\/ ff*l),
where det() is the determinant.

For any Besm ., the determinant is given by

det(B Zaz 1)+ det(Cyy) (3)

where é 57 is the minor matrix obtained by dropping row ¢ and column j from matrix B. The determinant

is a high-degree polynomial and therefore we perform Cholesky decomposition on B and use the simplified
convex log det() function. We decompose B into lower triangular matrices, B =LL" where L € R™ 1. . Thus,
log det(B) = log(det(LLT)) = log(det(L)det(LT)) = 2log(det(L)). Since L is a lower triangular matrix,
its determinant is simply the product of its diagonal entries, i.e., log(det(L)) = log [17 ti = >0 log ;.
Thus, log det(B) is convex.

Now, we formulate a convex mathematical model to find the minimum volume covering ellipsoid (MVCE)
covering a set of finite points using a log det() function (Boyd and Vandenberghe, 1996):

minimize  A(§) = log det (\/ E*l)
Az
subject to (% — _)T/Y(fj -0 <1 VjeT
Ax0
where = enforces positive definiteness on A. This model has a convex objective function, but a non-convex

constraint. However, the constraint can be reformulated as convex by defining M = \/X and b = M&

maximize log det M (NOO-MVCE)
Mp
subject to  ||MZ; —b|| <1 vjieT
M =0

This problem is a maximization of a concave function with convex constraints and is thus a convex opti-
mization problem, which can be solved to optimality. From the global optimal solution, M* and g*, we can
obtain needle orientation and position by A = (M*)T (M*) and &= (M*)~1b*, respectively. The eigenvalue
decomposition of A will give the orientation and stretch of the ellipse as described before. The eigenvector
corresponding to the smallest eigenvalue represents the longest semi-axis of the ellipse and hence gives the
orientation of the needle. The center ¢ corresponds to the center of the conducting part of the needle.

We can solve NOO-MVCE to optimality since it is a maximization of a concave function with convex
constraints and is therefore convex. We can obtain the needle position by ¢ = (M *)_15* and orientation by
eigenvalue decomposition of A = (M*)T(M*)

We treat a clustered needle applicator (Figure 1(b)) as a single needle, and identify smallest sphere
covering all the voxels by formulating a convex MVCS optimization model with an affine objective and a
second-order conic constraint (Boyd and Vandenberghe, 2004):

minimize T (NOO-MVCS)
r,C

subject to  ||Z; — & <r VieT
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Figure 2: Clustered needles (Altrogge et al, 2007). Barycenter & and needle orientation @ corresponds to ¢
and 60, respectively. Note that the 7 is not the same as r.

where r and ¢ are the radius and center of the sphere, respectively. The tines in the clustered applicator are
fixed, parallel, and equidistant. Therefore, the center of the fitted sphere corresponds to the barycenter or
centroid of the equilateral triangle formed by the centers of the conducting tips of each tine in the cluster.
We choose the cluster orientation along the diameter that maximizes needle-tumor contact. If the conducting
tines overlaps non-target voxels, then we rotate the cluster in increments of 5° until we find a better needle-
tumor contact. We note that the equilateral triangle has a rotational symmetry of 120°, which means the
triangle (or the needles of the cluster) maps onto itself after 120° rotation. Thus, we explore only 24 cluster
rotations in a given direction (Figure 2).

We note that since covering the boundary target voxels within an ellipse or sphere also covers the internal
voxels, we can reduce the constraints in models NOO-MVCE and NOO-MVCS by only considering the
boundary target voxels, i.e., 5 € 7', which we obtain with a grassfire algorithm (Blum, 1967).

2.1.2 Multiple needle placement

For multiple non-parallel k£ needle placement, we first divide tumor voxels into k clusters and then identify
needle orientation by fitting an ellipse around each cluster using NOO-MVCE (Figure 3). The methodology
is referred to as NOO-Kmeans. For a set of k needles, we use the classical k-means clustering optimization
model to identify these clusters:

. . . . —" _ 2 -
minimize Y > vl - 3 (k-means)
JET keK
R
subject to = m Vk e K (4)
ZVjET Tjk
> e =1 VieT (5)
ke
D=1 vk ek (6)
VieT
rik € {0,1} VieT,kek (7)

where p; is the mean of cluster k£ and 7;; € {0,1} indicates if voxel j is in cluster k. The objective is to
minimize the Euclidean distance of voxels from the center (), thereby assigning a voxel to a cluster k whose
center is closest of all clusters. Constraint 4 computes the mean of a cluster, and Constraint 5 assigns each
target voxel to a cluster. Constraint 6 ensures a non-empty cluster. The k-means model is a nonconvex model
due to the bilinear term in Constraint 4 as well as in the objective function. A 0-1 SDP-relaxation of k-means
has been proposed (Peng and Wei, 2007), but it is intractable for our problem size where the case sizes range
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Figure 3: Multiple needle placement using NOO-Kmeans
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from approximately 900 to 62,000 target voxels. Therefore, we solve k-means with Lloyd’s algorithm, which
iteratively assigns each voxel to the nearest cluster while updating the centroids until convergence (Lloyd,
1982).

2.2 Thermal dose optimization

Once needle positions are known, we compute the optimal treatment time for adequate thermal dose delivery.
We lift the geometric assumption made on the shape of thermal lesion in NOO and compute the actual thermal
dose received by the target using BHTE and ATDM thermal damage models. Unlike BHTE which provides
temperature at a given time, the ATDM (Henriques, 1947; Henriques and Moritz, 1947; Moritz, 1947; Moritz
and Henriques, 1947) thermal damage model considers thermal history of a voxel, i.e., how long a voxel is
exposed to a given temperature, and compute cumulative thermal damage over a period of time.

BHTE describes the relationship between tissue local interactions and heat delivery, and is given by the
following equation in a 3D system (Ahmed and Goldberg, 2004; Wissler, 1998):

oT 02T 9T 92T
PKCZE =K (81’2 + TyQ + 322> —cpppw(T —To) + Quy + Qp (BHTE)

where p; and pj, are the densities of tissue and blood (kg/m?), respectively; ¢, and ¢, are the specific heats
of the tisue and blood (J/kg-K), respectively; K is the thermal conductivity of the tissue (W/m-K); w is
the blood perfusion coefficient, i.e., blood flow rate/unit mass tissue (1/s); T' and T, are the temperatures of
tissue and arterial blood (K), respectively; @, is the power absorbed per unit volume of the tissue (W/m?);
and @, is metabolic heating, which is usually considered negligible (Chang and Beard, 2002). The values
used for the biological constants and other parameters are given in Table 1. The solution of BHTE gives the
temperature of each voxel at each time step.
The heat source, @y, is approximated by (Chen et al, 2006, 2009)

Qp = 00|| VO[3 (SAR)

where oy is the electrical conductivity of the tissue and ® is the electric potential. We obtain the electric
potential using the Laplacian equation with constant electrical conductivity (Chang and Nguyen, 2004) as
follows:
0?®  9%°®  9°®
ox? + Oy? + 022
The needle is positioned so that the center of its conducting part is placed at the ellipse or sphere center
obtained from NOO. The voxels in contact with the needle are computed from a ray tracing algorithm
(Amanatides and Woo, 1987) and form a needle-voxel intersection set. For Laplacian, the initial conditions
(voltage) are set to 0 for all voxels except the needle-voxel intersection set, whose initial conditions are set
to input voltage of the needle. Both BHTE and Laplacian are solved using a finite difference scheme with
homogeneous Neumann boundary conditions (Appendix A).
The Arrhenius thermal damage index is a dimensionless number 2, computed for every voxel j of
structure s and may be interpreted as the probability that the tissue is irreversibly damaged (Pearce, 2009).

ATDM is defined as .
—E4
Qs (t) = /o Aexp (RT(t)) dt (ATDM)

where A is the frequency factor, E4 is the activation energy, and R is the universal gas constant (Table 1).
T(t) is the average tissue absolute temperature (i.e., temperature in Kelvin) in the time interval [0,¢] and is
obtained from BHTE. Physically, €, is a natural log of the ratio of the original concentration of undamaged
molecules to those at the end of the heating (Pearce, 2009):

0 (Laplacian)

0 | Cy original concentration of undamaged molecules
. —Ind 22
7% undamaged molecules at time ¢

Thus, if C; € [0,1] and Cy = 1, then percentage (or probability) of damaged molecules at time ¢ is
D =1 —exp(—Qj;)
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Table 1: Parameter values for BHTE and ATDM

Parameter Value

Blood density(pp) (Tungjitkusolmun et al, 2002) 1000 kg/m?
Blood heat capacity (cp) (Tungjitkusolmun et al, 2002) 4180 J/kg-K
Blood thermal conductivity (Tungjitkusolmun et al, 2002) 0.543 W/m-K
Liver density (p¢) (Tungjitkusolmun et al, 2002) 1060 kg/m?
Liver heat capacity (p;) (Tungjitkusolmun et al, 2002) 3600 J/kg-K

Liver thermal conductivity (K) (Tungjitkusolmun et al, 2002)  0.512 W/m-K
Liver electrical conductivity (o) (Tungjitkusolmun et al, 2002)  3.33E-3 mS/cm

Blood perfusion (w) (Ebbini et al, 1988) 6.4E-3 1/s
Arterial temperature (T) 310.15 K
Frequency factor (A) (Schwarzmaier et al, 1998) 3.1E98 1/s
Activation energy (E4) (Schwarzmaier et al, 1998) 6.28E5 J/mo
Universal gas constant (R) (NIST, 2015) 8.3145 J/K-mol

because exp(—;,) = C; = undamaged molecules at time . We describe these percentage damage models
as D63 for p = 63% tissue damage, D70 for p = 70% tissue damage, etc. A value of p = 0.63 or 63% is
associated with irreversible thermal damage and corresponds to €2, = 1.

We define a set of needle configurations as a combination of needle type (n € A) and source voltage
(¢ € V). The set of damage models is given by d € D = {BHTE, ATDM, D63, D70, D80, D95}. For each
needle configuration, (¢, n), we first compute the BHTE for fixed treatment time using inputs from Laplacian
and then compute the ATDM followed by the percentage damage models if required for thermal damage d.
We save this information to determine the minimum treatment voltage and treatment times. We define a
numerical dose structure H%(¢,n, 2j,t) to identify damage using model d to voxel #; € HUT at time ¢t due
to needle configuration (¢, n).

For a fixed treatment time t,,,5, the minimum treatment voltage for full target coverage using damage
model d € D and needle type n € N is given by

qﬁz* = minimize ¢ (Minimum voltage)

subject to Hd((;S,nJ?j,tmax) > H%H VieT, 0V

where H%H is the threshold damage value for model d, H d(¢, N, 2, tmax) is the damage to voxel = at tmax
minutes when using needle configuration (¢,n). If temperature is used to quantify thermal damage, then
H%H = Try = 60°C; if the Arrhenius damage index is used to quantify thermal damage, then H%H = Qryg =
1; and if p percent damage is used to quantify thermal damage, then H{}; = p%.

Similarly, for a fixed voltage ¢, the minimum treatment time for full target coverage using damage model
d € D and needle type n € N is given by

tfj:n = minimize ¢ (Minimum treatment time)
subject to  H%(¢,n,a,t) > Hiy Vi€ T
t>0

To choose a single best needle configuration for damage model d, we select the needle configuration with
100% coverage and the least OAR damage (Algorithm 2).

3 Results

We perform all computations on Intel Core i7-3770 CPU with 3.40 GHz and 8 GB RAM using MATLAB
R2015b (Mathworks, Inc.). Our case studies are liver cases (Table 2) obtained from Robarts Research
Institute, Western University. In a clinical setting, tumors are over-ablated to ensure microscopic tumor
particles are killed along with the target itself. Therefore, we add surgical margins of 0 mm (N), 3 mm (S),
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Algorithm 2 Best needle configuration

Require: N < Set of needles types

Require: V « Set of source voltages

Require: d € D <~ Damage model

Require: H¢y « Threshold dose value

Require: H’i(d),n,f},tmax) < dose structure
1: for n € N do

2 for ¢ €V do

3: T ={% | Z; € T and HY(¢p,n, 7}, tmax) > Hiy} > Target damage
4: H={Z; | Z; € H and HY (), n, T}, tmax) > Hiy} > OAR damage
5 pf;;gﬂ « 100 x |T]/|T] > Percent target damage
6 pgﬁR + 100 x |7-[\/|’H\ > Percent OAR damage
7 end for

8: end for

9: (¢,n)* argmin{pgﬁ‘LR : p:f’fet > 99.99%}
10: return (¢, n)*

Table 2: Description of case studies

Volume Target Boundary
D (mm?) voxels target voxels

100%  50%  100%  50%  100% 50%

IN 898 044 898 544 501 293
1S 3063 1641 3063 1641 840 430
IM 5138 2595 5138 2595 1106 808
1L 13003 5874 13003 5874 1911 1839

2N 4657 2090 4657 2090 1591 738
25 10595 4430 10595 4430 2178 747
2M 15595 6320 15595 6320 2610 1058
2L 32225 12327 32225 12327 3830 2084

3N 13481 5183 13481 5183 3273 1334
3S 24895 9169 24895 9169 4060 1816
3M 33881 12226 33881 12226 4640 2158
3L 61771 21442 61772 21442 6230 3070

5 mm (M), 10 mm (L) around the target (Table 2). Further, in liver ablation OAR sparing is insignificant
due to its regenerative properties and hence no explicit OAR margin is added to the target. However, we
consider damage to non-target voxels outside surgical margin as OAR damage to understand the impact of
input parameters.

3.1 NOO results

We use CVX (CVX Research, 2012; Grant and Boyd, 2008) to solve NOO-MVCE and NOO-MVCS models
and test our NOO approach under two scenarios, (1) considering all the target voxels, and (2) considering
only boundary target voxels, obtained using a grassfire algorithm (Blum, 1967). For faster computation,
both these scenarios are solved for the entire target as well as targets sampled at 50%. We restrict our needle
types, NV, to eight Covidien specifications (Table 3) (Medtronic, 2016).

As the number of voxels increases, the runtimes for both NOO-MVCE and NOO-MVCS increase (Figure
4). The runtimes of NOO-MVCS are under 8 seconds for all unsampled target voxels and under 3 seconds
for unsampled boundary target voxels (Figure 4(a)). Using boundary target voxels gives an average compu-
tational gain of 60% and 53% for NOO-MVCS for unsampled and sampled case, respectively (Figures 4(a)
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Table 3: Needle types (N)

Abbreviation Needle description Active tip length (mm)
SN7 Single needle 7
SN10 Single needle 10
SN20 Single needle 20
SN30 Single needle 30
CN25 Clustered needle 25
MN2K30 Multiple needle, k = 2 30
MN3K30 Multiple needle, k£ = 3 30
MN3K40 Multiple needle, k = 3 40

Table 4: Numerical results for NOO A(§) = Fitted volumes, ¢ = needle center, @ = needle orientation

ID  A(¢) (mm?) ¢ 0 Model

IN 956 [35.24 34.39 47.15]"  [-0.87 —05 0.03]"  NOO-MVCE
3922.6 41.23 36.67 40.68]" [-0.01 01  003]"

2N {3929.6} {43.35 46.95 40.19} [0.82 —0.57 —0.01 NOO-Kmeans

3N 48419 [47.79 4817 69.59] " 1o o NOO-MVCS

T T

9881.4 42.62 5458 70.39 08 059 —0.06

3N |9536.4 55.87 50.00 70.14 0.16 —0.99 0.03 NOO-Kmeans
9519.6 45.65 39.90 70.45 —0.94 039  0.02

and 4(b)). For all unsampled target voxels, NOO-MVCE does not finish in reasonable amount of time (>1
hour) for Cases 2L and 3M, while Case 3L runs out of memory (Figure 4(c)). However, NOO-MVCE runs
in under a minute for unsampled boundary target voxels in all cases. An average computational gain of 81%
and 83% is obtained for unsampled and sampled cases, respectively, when only boundary voxels are used for
NOO-MVCE (Figures 4(c) and 4(d)).

We use boundary voxels to solve MVCE for NOO-Kmeans since using boundary voxels only has significant
computational advantage demonstrated earlier (Figures 4(e) and 4(f)). For unsampled cases, NOO-Kmeans
runs under a minute (Figure 4(e)). These fast runtimes may appear counter-intuitive since NOO-MVCE is
solved k times, once for each cluster. However, each cluster contains only a subset of target voxels, and we
consider only the boundary voxels of these clusters.

When using boundary voxels, runtimes are under a minute for the largest unsampled case (Case 3L).
Therefore, we report results only for unsampled cases for both NOO and TDO. For selected cases, Figure 5
shows the needle orientations given by MVCE, MVCS, and NOO-Kmeans models, and Table 4 shows their
fitted volumes.

3.2 TDO results

We solve BHTE and Laplacian using a finite difference scheme (Appendix A) to obtain thermal distributions
over a 20 min simulation with a 0.5 times step for eight needle types (Table 3) with source voltages, V, varying
from 2.5 V to 30 V in increments of 2.5 V. Thermal distributions are computed only if non-intersecting
needle positions are found. Each case consists of 384 runs: 8 needle types x 4 surgical margins x 12 source
voltages. The computational runtime of each run is the total time to solve Laplacian, BHTE, and ATDM,;
computational time is largely driven by the Laplacian (Figure 6(a)). We assess target and OAR damage using
the following thermal damage models: (1) >60°C threshold temperature from BHTE (T60), (2) Arrhenius
damage model (ATDM), (3) 63% damage (D63), (4) 70% damage (D70), (5) 80% damage (D80), and (6)

Damage Models. Archives of Clinical and Biomedical Research. 8 (2024): 73-97.
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Figure 4: NOO Runtimes
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A 1)
it
1) LV
(a) Case 1N single needle (NOO-MVCE) (b) Case 3N single clustered needle (NOO-MVCS)

(c) Case 2N two needles (NOO-Kmeans) (d) Case 3N three needles (NOO-Kmeans)

Figure 5: Needle positions and orientations. The dotted lines in 5(b) shows the equilateral triangle whose
vertices correspond to the centers of the conducting tines in the cluster.
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Table 5: Case 1N results for n = SN7
Damage model (d) ¢%* thn (min)

BHTE 20.00 1.20
ATDM 25.00 1.94
D63 25.00 1.93
D70 25.00 2.20
D80 27.50 1.90
D95 27.50 2.27

(€]
3
o}
o

Maximum target temperature (K)

700 T
Il L aplacian 550 T
I BHTE —6e— SN7
600 || ] Arrhenius ) —+—SN10
—*— SN20 n
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(a) Average runtime per case (b) Maximum target temperature (case 1L)

Figure 6: Average runtimes and maximum target temperature

95% damage (D95).

The maximum temperature in the target increases with an increase in source voltage; at least 7.5V
is recommended for the representative target treatment (Figure 6(b)). High source voltage increases the
numerical value of the initial conditions for the Laplacian, causing high target temperatures, while longer or
multiple needles increases the needle-voxel intersection set, resulting in larger thermal spread. Hence, more
needles or high source voltage yields large ablation volumes (Figure 7) and high target (Figure 8) and OAR
damage (Figure 9), and consequently high tissue molecular damage.

Full coverage is seen when more needles operate at low voltage or fewer needles operate at high voltage.
Further, a low and high source voltage is recommended when damage is quantified by BHTE and D95
models, respectively, resulting in a different needle configurations for the same case. This difference in needle
configuration arises because tissue molecular damage increases with the duration of exposure to temperatures
>60°C, and BHTE damage occurs before D95 damage (Figure 10). Therefore, certain needle configurations
achieve full BHTE coverage but partial D95 coverage because all the target voxels are not exposed long enough
at temperatures >60°C. Thus, BHTE damage requires a low source voltage and high tissue molecular damage
requires high source voltage (Table 6). Finally, our framework indicates the use of a single needle for targets
up to 15 ecm?® and multiple needles for larger targets (Figure 11). Needle configurations that do not attain
full coverage are not recommended for treatment.

Our multiple needle placement methodology is unable to find non-intersecting needle positions for smaller
tumors using longer multiple needles (e.g., MN3K30, MN3K40 for Case 1N), and hence no TDO computations
were performed for such cases. However, for Case 3N, NOO-Kmeans could not find non-intersecting needle
positions for MN3K40, and none of the other needle configurations were able to obtain 100% target coverage.
In such circumstances, we increase the target size by adding margins to obtain needle positions and perform
TDO analysis for the original target.
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Figure 7: Lesion volumes (Case 1N)
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Figure 8: Percent target coverage (Case 1N)
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Table 6: Recommended needle configurations (Algorithm 2)
Case ID Damage model Needle type Volts (V) OAR damage (%)

IN BHTE SN7 20.00 1.07
1N ATDM SN7 25.00 0.91
IN D63 SN10 20.00 0.69
IN D70 SN7 25.00 0.84
1IN D8O SN10 22.50 0.89
IN D95 SN7 27.50 0.82
2N BHTE MN2K30 7.50 2.21
2N ATDM MN2K30 10.00 2.34
2N D63 MN2K30 10.00 2.35
ON D70 MN2K30 10.00 2.16
2N D8O SN20 25.00 2.42
ON D95 SN20 27.50 2.62
3N BHTE MN2K30 27.50 6.03
3N ATDM MN3K30 30.00 8.85
3N D63 MN3K30 30.00 8.85
3N D70 MN3K30 30.00 8.57
3N D8O MN3K30 30.00 8.15
3N D95 - - -
MN3K40 *
MN3K30 | *x ok * .
MN2K30 ) ¢ * .
®
©  CON25 .
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Figure 11: Recommended needle configuration for BHTE damage model. The voltage is indicated by the
star size.
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4 Discussion

Due to the lack of standards based on either conformity or OAR-sparing, complexity of optimization models,
and difference in data sets and needle types used, it is difficult to draw direct comparisons with existing
simultaneous models. In ablation planning, simultaneous optimization provides the benefit of needle place-
ment by simultaneously computing thermal damage without any assumptions on ablation shape. Due to
inherent non-linear nature of ablation, simultaneous optimization methods, which solve PDEs as constraints
with needle position and orientation as only variables, are only able to produce locally optimal solutions.
They must be tailored to needle type as well as ablation modality thereby restricting their clinical viability.
Trajectory planning is difficult to incorporate in such models and due to long run-times experiments on
multiple source voltage (or power) selection is not tractable. Further, due to the mathematical complexity
of ablation optimization models, it is difficult to comment on the quality of their optimal solutions and none
of the existing models comment on optimality gaps. Decomposing needle placement and thermal damage
computation, as proposed in this work, results in inherent sub-optimal solutions. However, such an approach
provides several benefits, including computational advantage, flexibility towards ablation modality, flexibility
to incorporate trajectory planning, and needle types, that are not seen in simultaneous models.

Typically, a good cancer treatment plan will provide a full conformal target coverage with maximum
OAR sparing. However, unlike radiation, rigidity of heat deposition makes it difficult to control the shape
or spread of ablation. If full target coverage is the only necessary requirement, then any needle position that
achieves this goal is an acceptable solution. However, it is obvious that some needle positions are better
than others. For instance, a needle that is larger than target radius placed closer to target boundary may
provide full coverage but is less desirable than one closer to the center of the target. This choice can be
attributed to better target thermal dose, coverage of microscopic tumor particles surrounding the target, and
less OAR damage. Existing models do not provide information on OAR sparing and use different data sets
for any comparative analysis and we did not find any standard in the literature to evaluate quality of an RFA
treatment based on either OAR-sparing or target conformity.

Intuitively, for a single needle placement, the needle position will correspond to the centroid of the target
and its orientation will correspond to the shape of the target. This hypothesis has been previously validated
through experiments using simultaneous optimization (Altrogge et al, 2007). Our fast convex NOO model,
NOO-MVCE, is able to deliver similar solutions. The grassfire method to extract boundary voxels yields
NOO solutions in <1 minute. For multiple needle placement, we provide detailed methodological explanation
absent in previous work using same approach (Chen et al, 2009).

Any geometric assumptions in NOO stage are lifted in TDO stage and actual thermal dosimetry is com-
puted using several damage models. The thermal dose for the largest target (Case 3L) is computed in <20
minutes, which is a significant improvement over the 1-2 hours reported by simultaneous optimization (Al-
trogge et al, 2007; Chen et al, 2009). We can easily extend our work to other ablation modalities by solving
a different set of PDEs, e.g., Maxwell’s equations for MWA | which can be difficult in a PDE-constrained sys-
tems. Further, new needle types can be seamlessly added in the NOO stage without affecting the methodology
for thermal dose computations.

Similar to simultaneous optimization methods, we assume a fixed treatment time which in our case is 20
minutes. This conservative longer treatment time gives us enough simulation data to analyze the treatment
quality while ensuring maximum target coverage. However, for the recommended needle configurations,
full coverage is achieved within the first few minutes. Since tissues eventually reach thermal equilibrium,
treatment time does not significantly affect the treatment quality, unlike radiation treatments. Gradual heat
deposition ensures larger ablation volumes and therefore the coverage of microscopic tumor particles with
longer treatment time increasing the tissue molecular damage.

We addressed models to design ablation treatments in a deterministic setting, where needle placements
are exact. However, ultrasound image guidance may be inaccurate up to 2.5 mm (Neshat et al, 2013), and
further, needles may deflect (bend) unexpectedly during insertion. Clinicians can often counteract deflection
when it is observed, however, the frequency and causes of deflection are not well understood, though there
are efforts to anticipate and estimate needle deflection (e.g., Jiang et al (2018)). We note that despite these
uncertainties, clinical treatments, like our models presented here, are not designed with these uncertainties
in consideration. We also note that our decoupled NOO and TDO approach sacrifices an unknown amount
of objective function quality compared to simultaneous NOO and TDO, but simultaneous optimization of

Citation: Shefali Kulkarni-Thaker, Dionne Aleman, Aaron Fenster. Inverse Planning for Radiofrequency Ablation in Cancer Therapy Using Multiple
Damage Models. Archives of Clinical and Biomedical Research. 8 (2024): 73-97.



Volume 8 ¢ Issue 2 93
Kulkarni-Thaker S, et al., Arch Clin Biomed Res 2024
Journals DOI:10.26502/acbr.50170387

both yields a challenging and intractable model.

5 Conclusion and future work

While the current state-of-the-art in ablation planning performs simultaneous optimization, these methods
lack in computational tractability and flexibility to accommodate different needle types and ablation modal-
ity. In this work, we present a novel systematic approach to radiofrequency ablation where we present a
dissociated needle placement and thermal dose computation methodology that can be extended to other
ablation modalities (e.g., microwave ablation). We eliminate the need to iteratively compute thermal dose
thereby improving the computational tractability of developing a treatment plan. Further, our framework
considers NOO and TDO for eight different needle types and is able to accommodate other needles (e.g.,
umbrella-shaped needles).

We designed fast convex NOO models for single and clustered needles that can be solved to optimality
as well as fast heuristic approach for multiple random needle placement. We are also able to compute the
Laplacian, BHTE, ATDM, and percent damage models in reasonable amount on time. However, the use of
commercial PDE solvers that include RF modules (COMSOL Inc., 2017) can enhance the quality of these
solutions, and therefore treatment plans, since several physiological, thermal, and electrical process (e.g,
change in tissue thermal properties with temperature change) are difficult to capture by mathematical simu-
lations presented here. Further extensions to this work include addressing uncertainties in needle placement
and deflection. Although trajectory planning and thermal dose validations must be performed before clinical
applicability, we present a promising framework that gives 100% target coverage while, for the first time,
performing OAR damage analysis using several different thermal damage models. We analyse the effect of
different needle types (needle tip length and number of needles) on target and OAR damage using several
damage models when operated under different source voltages. Finally, our methods culminate to the best
needle configuration based on full target and minimum OAR coverage.
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A Finite difference schemes: Laplacian and BHTE

The electrostatic equation given by Laplacian is solved using an explicit central finite difference scheme as

follows:
0% N V2o Pz Hv,y,2) + P(r —v,y,2) — 2®(z,y, 2)

ox2 V2 v2
e VPO B(x,y+v,2)+ P(x,y—v,2) - 20(x,y,2)
o2 Viy v?
e VPO B(x,y,z+0v)+ P(x,y,2 —v) - 28(x,y,2)
922 V2y v2

where ®(z,y, 2) is the voltage at position (z,y, z) and v is the dimension of the voxel.

Let W represent the problem domain, and ¥, C W represent the voxels at the boundary of the domain.
T C ¥ be the set of voxels representing the tumor, 7y C T be the voxels in contact with the needle, and
S C ¥ be the voxels representing the OARs.
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The initial conditions are given by:

O(x,y,2) =0 Vr,y,z €W
q)<$7yvz) = (I)O V%yaz € TN

and the homogeneous Neumann boundary conditions Strauss (1992) are given by:

od 09 09
—=——=—=0 Ve,y,z € ¥
dr Oy 0z R b
where @ is the input voltage.

Pennes’ bioheat equation in 3D given by Equation BHTE is solved using an explicit central finite difference
scheme. The temperature is evaluated as follows:

87T ~ E _ T(t,$,y,2’) — T(t — Atvxa/yvz) <8)
ot~ Vvt At

where T'(t,x,y, z) is the temperature of a voxel at position (x,y, z) at time ¢, and At is the time step length
or the frequency in seconds when temperature measures are made. The spatial coordinates are approximated

as follows:
T VT T(tx+v,y2)+T(tx—vyz2) 2Ty, z2)

ox2 ~ V2x v2
T VT T(t,x,y+v,2)+T(tx,y—vz2) —2T(t 2y, 2)
Oy ~ V2y - 2
o*T N VAT T(ta,y,z4+v) +T(tz,y,z—v) —2T(t,z,y,2)
022 T V2y v2

The initial condition is given by:
T(0,z,y, 2) = Thody Va,y,z € U ©)
and the homogeneous Neumann boundary conditions Strauss (1992) are given by:

or or or
%—8—24—5—0 \V/l‘,y726\11b

where 7 is total simulation time, T}04y = 310.15K is the body temperature. We use voxel size lmm X lmm
x Ilmm or v = lmm and the time step is At = 0.5s.

Note: Please download the original source file from the authors at the below link
https://www.fortunejournals.com/suppli/ACBR10091-source.pdf
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