A Chatbot that Learns One’s Preferences as the Next Step in Human Digital Twins: A Pilot Study Using HyperCLOVA X, a Large Language Model
Author(s): Joseph Yun, Joshua Lee, Yohan Yun, Stanley Yoon, Sang-Hoon Park and Sijung Yun
A digital twin is a virtual representation that serves as the real-time digital counterpart of a physical object or system. Recent advancements have extended the concept of digital twins to humans, incorporating complex biological data such as DNA (Predictiv Care, Inc.) and immune system profiles. These sophisticated models go beyond mere pictorial representations, offering a more holistic digital reflection. However, a significant gap remains. The current human digital twin models are not capable of learning one’s preferences. In this pilot study, we introduce Diginality, a chatbot powered by HyperCLOVA X, a Large Language Model (LLM) developed by NAVER, Inc. Diginality, learns one’s preferences with custom training from data collected by interview-style questions on the user’s topic of interest. Our findings demonstrate that Diginality successfully answers one’s preferences, thereby adding a new dimension to the concept of human digital twins. This work represents a pioneering step towards creating a more comprehensive and psychologically nuanced human digital twin.